
Welcome to
6.00.1x

16.00.1X LECTURE

OVERVIEW OF COURSE
 learn computational modes of
thinking

 master the art of computational
problem solving

 make computers do what you want
them to do

6.00.1X LECTURE 2

https://ohthehumanityblog.files.wordpress.com/2014/09/computerthink.gif

TOPICS
 represent knowledge with data structures

 iteration and recursion as computational metaphors

 abstraction of procedures and data types

 organize and modularize systems using object classes
and methods

 different classes of algorithms, searching and sorting

 complexity of algorithms

6.00.1X LECTURE 3

WHAT DOES A COMPUTER DO
 Fundamentally:

◦ performs calculations
a billion calculations per second!

two operations in same time light travels 1 foot

◦ remembers results
100s of gigabytes of storage!

typical machine could hold 1.5M books of standard size

 What kinds of calculations?
◦ built-in to the language
◦ ones that you define as the programmer

6.00.1X LECTURE 4

SIMPLE CALCULATIONS
ENOUGH?
 Searching the World Wide Web

◦ 45B pages; 1000 words/page; 10 operations/word to find

◦ Need 5.2 days to find something using simple operations

 Playing chess
◦ Average of 35 moves/setting; look ahead 6 moves; 1.8B

boards to check; 100 operations/choice

◦ 30 minutes to decide each move

 Good algorithm design also needed to accomplish a
task!

6.00.1X LECTURE 5

ENOUGH STORAGE?
 What if we could just pre-compute information and
then look up the answer
◦ Playing chess as an example

◦ Experts suggest 10^123 different possible games

◦ Only 10^80 atoms in the observable universe

6.00.1X LECTURE 6

ARE THERE LIMITS?
 Despite its speed and size, a computer does have
limitations
◦ Some problems still too complex

◦ Accurate weather prediction at a local scale

◦ Cracking encryption schemes

◦ Some problems are fundamentally impossible to compute
◦ Predicting whether a piece of code will always halt with an answer

for any input

6.00.1X LECTURE 7

6.00.1X LECTURE 8

TYPES OF KNOWLEDGE
 computers know what you tell them

 declarative knowledge is statements of fact.
◦ there is candy taped to the underside of one chair

 imperative knowledge is a recipe or “how-to”
knowledge
1) face the students at the front of the room
2) count up 3 rows
3) start from the middle section’s left side
4) count to the right 1 chair
5) reach under chair and find it

6.00.1X LECTURE 9

A NUMERICAL EXAMPLE
 square root of a number x is y such that y*y = x

 recipe for deducing square root of number x (e.g. 16)
1) Start with a guess, g

2) If g*g is close enough to x, stop and say g is the
answer

3) Otherwise make a new guess by averaging g and x/g

4) Using the new guess, repeat process until close enough

6.00.1X LECTURE 10

g g*g x/g (g+x/g)/2

3 9 5.333 4.1667

4.1667 17.36 3.837 4.0035

4.0035 16.0277 3.997 4.000002

WHAT IS A RECIPE

1) sequence of simple steps

2) flow of control process
that specifies when each
step is executed

3) a means of determining
when to stop

Steps 1+2+3 = an algorithm!

6.00.1X LECTURE 11

6.00.1X LECTURE 12

COMPUTERS ARE MACHINES
 how to capture a
recipe in a mechanical
process

 fixed program
computer
◦ calculator

◦ Alan Turing’s Bombe

 stored program
computer
◦ machine stores and

executes instructions

6.00.1X LECTURE 13

http://www.upgradenrepair.com/computerparts/computerparts.htm

CC-BY SA 2.0 dIaper

BASIC MACHINE ARCHITECTURE

6.00.1X LECTURE 14

MEMORY

CONTROL

UNIT

ARITHMETIC

LOGIC UNIT

INPUT OUTPUT

program counter do primitive ops

STORED PROGRAM COMPUTER
 sequence of instructions stored inside computer

◦ built from predefined set of primitive instructions
1) arithmetic and logic

2) simple tests

3) moving data

 special program (interpreter) executes each
instruction in order
◦ use tests to change flow of control through sequence

◦ stop when done

6.00.1X LECTURE 15

BASIC PRIMITIVES
 Turing showed you can compute anything
using 6 primitives

 modern programming languages have
more convenient set of primitives

 can abstract methods to create new
primitives

 anything computable in one language is
computable in any other programming
language

6.00.1X LECTURE 16

By GabrielF (Own work) [CC BY-
SA 3.0
(http://creativecommons.org/lic
enses/by-sa/3.0)], via
Wikimedia Commons

6.00.1X LECTURE 17

CREATING RECIPES
 a programming language provides a set of primitive
operations

 expressions are complex but legal combinations of
primitives in a programming language

 expressions and computations have values and
meanings in a programming language

6.00.1X LECTURE 18

ASPECTS OF LANGUAGES
 primitive constructs

◦ English: words

◦ programming language: numbers, strings, simple
operators

6.00.1X LECTURE 19

ASPECTS OF LANGUAGE
 syntax

◦ English: "cat dog boy"  not syntactically valid

"cat hugs boy" syntactically valid

◦ programming language: "hi"5 not syntactically valid

3.2*5 syntactically valid

6.00.1X LECTURE 20

ASPECTS OF LANGUAGES
 static semantics is which syntactically valid strings have
meaning
◦ English: "I are hungry" syntactically valid

but static semantic error

◦ programming language: 3.2*5  syntactically valid

3+"hi" static semantic error

6.00.1X LECTURE 21

ASPECTS OF LANGUAGES
 semantics is the meaning associated with a
syntactically correct string of symbols with no static
semantic errors
◦ English: can have many meanings –

◦ “Flying planes can be dangerous”

◦ “This reading lamp hasn’t uttered a word since
I bought it?”

◦ programming languages: have only one meaning but may
not be what programmer intended

6.00.1X LECTURE 22

WHERE THINGS GO WRONG
 syntactic errors

◦ common and easily caught

 static semantic errors
◦ some languages check for these before running program

◦ can cause unpredictable behavior

 no semantic errors but different meaning than what
programmer intended
◦ program crashes, stops running

◦ program runs forever

◦ program gives an answer but different than expected

6.00.1X LECTURE 23

OUR GOAL
 Learn the syntax and semantics of a programming
language

 Learn how to use those elements to translate
“recipes” for solving a problem into a form that the
computer can use to do the work for us

 Learn computational modes of thought to enable us
to leverage a suite of methods to solve complex
problems

6.00.1X LECTURE 24

6.00.1X LECTURE 25

PYTHON PROGRAMS
 a program is a sequence of definitions and commands

◦ definitions evaluated

◦ commands executed by Python interpreter in a shell

 commands (statements) instruct interpreter to do
something

 can be typed directly in a shell or stored in a file that
is read into the shell and evaluated

6.00.1X LECTURE 26

OBJECTS
 programs manipulate data objects

 objects have a type that defines the kinds of things
programs can do to them

 objects are
◦ scalar (cannot be subdivided)

◦ non-scalar (have internal structure that can be accessed)

6.00.1X LECTURE 27

SCALAR OBJECTS
 int – represent integers, ex. 5

 float – represent real numbers, ex. 3.27

 bool – represent Boolean values True and False

 NoneType – special and has one value, None

 can use type() to see the type of an object

In [1]: type(5)

Out[1]: int

In [2]: type(3.0)

Out[2]: float

6.00.1X LECTURE 28

TYPE CONVERSIONS (CAST)
 can convert object of one type to another

 float(3) converts integer 3 to float 3.0

 int(3.9) truncates float 3.9 to integer 3

6.00.1X LECTURE 29

PRINTING TO CONSOLE
 To show output from code to a user, use print
command

In [11]: 3+2

Out[11]: 5

In [12]: print(3+2)

5

6.00.1X LECTURE 30

EXPRESSIONS
 combine objects and operators to form expressions

 an expression has a value, which has a type

 syntax for a simple expression
<object> <operator> <object>

6.00.1X LECTURE 31

OPERATORS ON ints and floats
 i+j  the sum

 i-j  the difference

 i*j  the product

 i/j  division

 i//j int division

 i%j  the remainder when i is divided by j

 i**j i to the power of j

6.00.1X LECTURE 32

- if both are ints, result is int
- if either or both are floats, result is float

- result is int, quotient without remainder

- result is float

SIMPLE OPERATIONS
 parentheses used to tell Python to do these
operations first
◦ 3*5+1 evaluates to 16

◦ 3*(5+1) evaluates to 18

 operator precedence without parentheses
◦ **

◦ *

◦ /

◦ + and – executed left to right, as appear in expression

6.00.1X LECTURE 33

6.00.1X LECTURE 34

BINDING VARIABLES AND
VALUES
 equal sign is an assignment of a value to a variable
name

pi = 3.14159

pi_approx = 22/7

 value stored in computer memory

 an assignment binds name to value

 retrieve value associated with name or variable by
invoking the name, by typing pi

6.00.1X LECTURE 35

ABSTRACTING EXPRESSIONS
 why give names to values of expressions?

 reuse names instead of values

 easier to change code later

pi = 3.14159

radius = 2.2

area = pi*(radius**2)

6.00.1X LECTURE 36

PROGRAMMING vs MATH
 in programming, you do not “solve for x”

pi = 3.14159

radius = 2.2

area of circle

area = pi*(radius**2)

radius = radius+1

6.00.1X LECTURE 37

CHANGING BINDINGS
 can re-bind variable names using new assignment
statements

 previous value may still stored in memory but lost the
handle for it

 value for area does not change until you tell the
computer to do the calculation again

6.00.1X LECTURE 38

pi

radius

area

3.14

2.2

15.1976

3.2

pi = 3.14

radius = 2.2

area = pi*(radius**2)

radius = radius+1

6.00.1X LECTURE 39

COMPARISON OPERATORS ON
int and float
 i and j are any variable names

i>j

i>=j

i<j

i<=j

i==j equality test, True if i equals j

i!=j inequality test, True if i not equal to j

6.00.1X LECTURE 40

LOGIC OPERATORS ON bools
 a and b are any variable names

not a  True if a is False
False if a is True

a and b  True if both are True

a or b  True if either or both are True

6.00.1X LECTURE 41

If right clear,
go right

If right blocked,
go forward

If right and
front blocked,

go left

If right , front,
left blocked,

go back

6.00.1X LECTURE 42

BRANCHING PROGRAMS
The simplest branching statement
is a conditional
◦ A test (expression that evaluates to
True or False)

◦ A block of code to execute if the
test is True

◦ An optional block of code to
execute if the test is False

6.00.1X LECTURE 43

A SIMPLE EXAMPLE
x = int(input('Enter an integer: '))

if x%2 == 0:

print(‘’)

print('Even')

else:

print(‘’)

print('Odd')

print(’Done with conditional')

6.00.1X LECTURE 44

SOME OBSERVATIONS
The expression x%2 == 0 evaluates to True when
the remainder of x divided by 2 is 0

Note that == is used for comparison, since = is
reserved for assignment

The indentation is important – each indented set of
expressions denotes a block of instructions
◦ For example, if the last statement were indented, it would

be executed as part of the else block of code

Note how this indentation provides a visual structure
that reflects the semantic structure of the program

6.00.1X LECTURE 45

NESTED CONDITIONALS
if x%2 == 0:

if x%3 == 0:

print('Divisible by 2 and 3’)

else:

print('Divisible by 2 and not by 3’)

elif x%3 == 0:

print('Divisible by 3 and not by 2’)

6.00.1X LECTURE 46

COMPOUND BOOLEANS
if x < y and x < z:

print('x is least’)

elif y < z:

print('y is least’)

else:

print('z is least’)

6.00.1X LECTURE 47

CONTROL FLOW - BRANCHING
if <condition>:

<expression>

<expression>

...

if <condition>:

<expression>

<expression>

...

else:

<expression>

<expression>

...

if <condition>:

<expression>

<expression>

...

elif <condition>:

<expression>

<expression>

...

else:

<expression>

<expression>

...

 <condition> has a value True or False

 evaluate expressions in that block if <condition> is True

6.00.1X LECTURE 48

INDENTATION
 matters in Python

 how you denote blocks of code
x = float(input("Enter a number for x: "))

y = float(input("Enter a number for y: "))

if x == y:

print("x and y are equal”)

if y != 0:

print("therefore, x / y is", x/y)

elif x < y:

print("x is smaller”)

else:

print("y is smaller”)

print("thanks!”)

6.00.1X LECTURE 49

= vs ==
x = float(input("Enter a number for x: "))

y = float(input("Enter a number for y: "))

if x == y:

print("x and y are equal”)

if y != 0:

print("therefore, x / y is", x/y)

elif x < y:

print("x is smaller”)

else:

print("y is smaller”)

print("thanks!”)

6.00.1X LECTURE 50

WHAT HAVE WE ADDED?
 Branching programs allow us to make choices and do
different things

 But still the case that at most, each statement gets
executed once.

 So maximum time to run the program depends only
on the length of the program

 These programs run in constant time

6.00.1X LECTURE 51

