
STRINGS,
BRANCHING,
ITERATION

6.00.1X LECTURE 1

VARIABLES (REVISITED)
 name

◦ descriptive

◦ meaningful

◦ helps you re-read code

◦ cannot be keywords

 value
◦ information stored

◦ can be updated

6.00.1X LECTURE 2

VARIABLE BINDING WITH =
 compute the right hand side  VALUE

 store it (aka bind it) in the left hand side  VARIABLE

 left hand side will be replaced with new value

 = is called assignment

x = 2

x = x*x

y = x+1

6.00.1X LECTURE 3

BINDING EXAMPLE
 swap variables

– is this ok?

x = 1

y = 2

y = x

x = y

 swap variables

– this is ok!

x = 1

y = 2

temp = y

y = x

x = temp

6.00.1X LECTURE 4

6.00.1X LECTURE 5

TYPES
 variables and expressions

◦ int

◦ float

◦ bool

◦ string -- NEW

◦ … and others we will see later

6.00.1X LECTURE 6

STRINGS
 letters, special characters, spaces, digits

 enclose in quotation marks or single quotes
hi = "hello there”

greetings = ‘hello’

 concatenate strings
name = "eric"

greet = hi + name

greeting = hi + " " + name

6.00.1X LECTURE 7

OPERATIONS ON STRINGS
 ‘ab’+ ‘cd’  concatenation

 3* ‘eric’  successive concatenation

 len(‘eric’)  the length

 ‘eric’[1]  indexing

 ‘eric’[1:3]  slicing

6.00.1X LECTURE 8

- Begins with index 0
- Attempting to index beyond

length – 1 is an error

- Extracts sequence starting at first
index, and ending before second
index

- If no value before :, start at 0
- If no value after :, end at length
- If just :, make a copy of entire

sequence

6.00.1X LECTURE 9

INPUT/OUTPUT: print
 used to output stuff to console

 keyword is print

x = 1

print(x)

x_str = str(x)

print("my fav num is", x, ".", "x =", x)

print("my fav num is " + x_str + ". " + "x = " + x_str)

6.00.1X LECTURE 10

INPUT/OUTPUT: input("")
 prints whatever is within the quotes

 user types in something and hits enter

 returns entered sequence

 can bind that value to a variable so can reference
text = input("Type anything... ")

print(5*text)

 input returns a string so must cast if working with numbers
num = int(input("Type a number... "))

print(5*num)

6.00.1X LECTURE 11

6.00.1X LECTURE 12

IDE’s
 painful to just type things into a shell

 better to have a text editor – integrated development
environment (IDE)
◦ IDLE or Anaconda are examples

 comes with
◦ Text editor – use to enter, edit and save your programs

◦ Shell – place in which to interact with and run your
programs; standard methods to evaluate your programs
from the editor or from stored files

◦ Integrated debugger (we’ll use later)

6.00.1X LECTURE 13

6.00.1X LECTURE 14

6.00.1X LECTURE 15

BRANCHING PROGRAMS
(REVISITED)

The simplest branching statement
is a conditional
◦ A test (expression that evaluates to
True or False)

◦ A block of code to execute if the
test is True

◦ An optional block of code to
execute if the test is False

6.00.1X LECTURE 16

COMPARISON OPERATORS ON
int and float
 i and j are any variable names

i>j

i>=j

i<j

i<=j

i==j equality test, True if i equals j

i!=j inequality test, True if i not equal to j

6.00.1X LECTURE 17

LOGIC OPERATORS ON bools
 a and b are any variable names

not a  True if a is False
False if a is True

a and b  True if both are True

a or b  True if either or both are True

6.00.1X LECTURE 18

CONTROL FLOW - BRANCHING
if <condition>:

<expression>

<expression>

...

if <condition>:

<expression>

<expression>

...

else:

<expression>

<expression>

...

if <condition>:

<expression>

<expression>

...

elif <condition>:

<expression>

<expression>

...

else:

<expression>

<expression>

...

 <condition> has a value True or False

 evaluate expressions in that block if <condition> is True

6.00.1X LECTURE 19

USING CONTROL IN LOOPS
 simple branching programs just make choices, but
path through code is still linear

 sometimes want to reuse parts of the code
indeterminate number of times

6.00.1X LECTURE 20

 You are playing a
video game, and are
lost in some woods

 If you keep going
right, takes you back
to this same screen,
stuck in a loop

if <exit right>:

<set background to woods_background>

if <exit right>:

<set background to woods_background>

if <exit right>:

<set background to woods_background>

and so on and on and on...

else:

<set background to exit_background>

else:

<set background to exit_background>

else:

<set background to exit_background>

6.00.1X LECTURE 21

You are in the Lost Forest.



Go left or right?

while <exit right>:

<set background to woods_background>

<set background to exit_background>

6.00.1X LECTURE 22

You are in the Lost Forest.



Go left or right?

 You are playing a
video game, and are
lost in some woods

 If you keep going
right, takes you back
to this same screen,
stuck in a loop

CONTROL FLOW:
while LOOPS
while <condition>:

<expression>

<expression>

...

 <condition> evaluates to a Boolean

 if <condition> is True, do all the steps inside the
while code block

 check <condition> again

 repeat until <condition> is False

6.00.1X LECTURE 23

while LOOP EXAMPLE
You are in the Lost Forest.



Go left or right?

n = input("You are in the Lost Forest. Go left or right? ")

while n == "right":

n = input("You are in the Lost Forest. Go left or right? ")

print("You got out of the Lost Forest!”)

6.00.1X LECTURE 24

CONTROL FLOW:
while and for LOOPS
more complicated with while loop

n = 0

while n < 5:

print(n)

n = n+1

shortcut with for loop

for n in range(5):

print(n)

6.00.1X LECTURE 25

CONTROL FLOW: for LOOPS
for <variable> in range(<some_num>):

<expression>

<expression>

...

 each time through the loop, <variable> takes a value

 first time, <variable> starts at the smallest value

 next time, <variable> gets the prev value + 1

 etc.

6.00.1X LECTURE 26

range(start,stop,step)
 default values are start = 0 and step = 1 and is optional

 loop until value is stop - 1

mysum = 0

for i in range(7, 10):

mysum += i

print(mysum)

mysum = 0

for i in range(5, 11, 2):

mysum += i

print(mysum)

6.00.1X LECTURE 27

break STATEMENT
 immediately exits whatever loop it is in

 skips remaining expressions in code block

 exits only innermost loop

while <condition_1>:

while <condition_2>:

<expression_a>

break

<expression_b>

<expression_c>

6.00.1X LECTURE 28

break STATEMENT
mysum = 0

for i in range(5, 11, 2):

mysum += i

if mysum == 5:

break

print(mysum)

 what happens in this program?

6.00.1X LECTURE 29

for VS while LOOPS
for loops

 know number of
iterations

 can end early via
break

 uses a counter

 can rewrite a for loop
using a while loop

while loops

 unbounded number of
iterations

 can end early via break

 can use a counter but
must initialize before loop
and increment it inside loop

may not be able to
rewrite a while loop using
a for loop

6.00.1X LECTURE 30

6.00.1X LECTURE 31

ITERATION
 Concept of iteration let’s us extend
simple branching algorithms to be able to
write programs of arbitrary complexity
◦ Start with a test

◦ If evaluates to True, then execute loop
body once, and go back to reevaluate the
test

◦ Repeat until test evaluates to False,
after which code following iteration
statement is executed

6.00.1X LECTURE 32

AN EXAMPLE
x = 3

ans = 0

itersLeft = x

while (itersLeft != 0):

ans = ans + x

itersLeft = itersLeft – 1

print(str(x) + '*' + str(x) + ' = ' + str(ans))

This code squares the value of x by repetitive addition.

6.00.1X LECTURE 33

x ans itersLeft

3 0 3

3 2

6 1

9 0

STEPPING THROUGH CODE
x = 3

ans = 0

itersLeft = x

while (itersLeft != 0):

ans = ans + x

itersLeft = itersLeft – 1

print(str(x) + '*' + str(x) + ' = ' + str(ans))

Some properties of iteration loops:
• need to set an iteration variable outside the loop
• need to test variable to determine when done
• need to change variable within the loop, in addition to other work

6.00.1X LECTURE 34

ITERATIVE CODE
 Branching structures (conditionals) let us jump to
different pieces of code based on a test
◦ Programs are constant time

 Looping structures (e.g., while) let us repeat pieces of
code until a condition is satisfied
◦ Programs now take time that depends on values of

variables, as well as length of program

6.00.1X LECTURE 35

6.00.1X LECTURE 36

CLASSES OF ALGORITHMS
 Iterative algorithms allow us to do more complex
things than simple arithmetic

We can repeat a sequence of steps multiple times
based on some decision; leads to new classes of
algorithms

 One useful example are “guess and check” methods

6.00.1X LECTURE 37

GUESS AND CHECK
 Remember our “declarative” definition of square root
of x

 If we could guess possible values for square root (call
it g), then can use definition to check if g*g = x

We just need a good way to generate guesses

6.00.1X LECTURE 38

FINDING CUBE ROOT OF
INTEGER
 One way to use this idea of generating guesses in
order to find a cube root of x is to first try 0**3, then
1**3, then 2**3, and so on

 Can stop when reach k such that k**3 > x

 Only a finite number of cases to try

6.00.1X LECTURE 39

SOME CODE
x = int(input('Enter an integer: '))

ans = 0

while ans**3 < x:

ans = ans + 1

if ans**3 != x:

print(str(x) + ' is not a perfect cube')

else:

print('Cube root of ' + str(x) + ' is ' + str(ans))

6.00.1X LECTURE 40

EXTENDING SCOPE
 Only works for positive integers

 Easy to fix by keeping track of sign, looking for solution
to positive case

6.00.1X LECTURE 41

SOME CODE
x = int(input('Enter an integer: '))

ans = 0

while ans**3 < abs(x):

ans = ans + 1

if ans**3 != abs(x):

print(str(x) + ' is not a perfect cube')

else:

if x < 0:

ans = - ans

print('Cube root of ' + str(x) + ' is ' + str(ans))

6.00.1X LECTURE 42

LOOP CHARACTERISTICS
 Need a loop variable

◦ Initialized outside loop
◦ Changes within loop
◦ Test for termination depends on variable

 Useful to think about a decrementing function
◦ Maps set of program variables into an integer
◦ When loop is entered, value is non-negative
◦ When value is <= 0, loop terminates, and
◦ Value is decreased every time through loop

 Here we can use abs(x) – ans**3

6.00.1X LECTURE 43

WHAT IF MISS A CONDITION?
 Suppose we don’t initialize the variable?

◦ Likely get a NameError; or worse use an expected value to
initiate the computation

 Suppose we don’t change the variable inside the loop?
◦ Will end up in an infinite loop, never reaching the

terminating condition

6.00.1X LECTURE 44

GUESS-AND-CHECK
 you are able to guess a value for solution

 you are able to check if the solution is correct

 keep guessing until find solution or guessed all values

 the process is exhaustive enumeration

6.00.1X LECTURE 45

CLEANER GUESS-AND-CHECK
– cube root
cube = 8

for guess in range(cube+1):

if guess**3 == cube:

print("Cube root of ", cube, ” is ", guess)

6.00.1X LECTURE 46

CLEANER GUESS-AND-CHECK
– cube root
cube = 8

for guess in range(abs(cube)+1):

if guess**3 >= abs(cube):

break

if guess**3 != abs(cube):

print(cube, ’is not a perfect cube’)

else:

if cube < 0:

guess = -guess

print('Cube root of ' + str(cube) + ' is ' + str(guess))

6.00.1X LECTURE 47

EXHAUSTIVE ENUMERATION
 Guess and check methods can work on problems with
a finite number of possibilities

 Exhaustive enumeration is a good way to generate
guesses in an organized manner

6.00.1X LECTURE 48

