STRINGS,
BRANCHING,
I TERATION

VARIABLES (REVISITED)

" name
o descriptive
o meaningful
> helps you re-read code
o cannot be keywords

= yvalue
o information stored
> can be updated

VARIABLE BINDING WITH =

= compute the right hand side - VALUE
= store it (aka bind it) in the left hand side > VARIABLE

= |eft hand side will be replaced with new value

= = js called assignment

\\e(\ S
Ky ‘«\e «
xe 6\\) 3\0\6(\ &*
_ Mg we ©
\0\(\6 qe((
X = X*X —— o o
vy = x+1

6.00.1X LECTURE 3

BINDING EXAMPLE

= swap variables " swap variables
—is this ok? — this is ok!
x =1 S x =1
y =2 e y = 2
’\\\‘\6 \\’d"\‘ ec,\.
y = X 0ol temp = vy
X =y ‘“\ y = X

6.00.1X LECTURE 5

TYPES

= variables and expressions
° 1nt
float
° bool
string-- NEW
... and others we will see later

(0]

(0]

0]

6.00.1X LECTURE 6

STRINGS

= |etters, special characters, spaces, digits

= enclose in quotation marks or single quotes

hi = "hello there”
greetings = ‘hello’

= concatenate strings

name = "eric"
greet = hi + name
greeting = hi + " " 4+ name

6.00.1X LECTURE 7

OPERATIONS ON STRINGS

"= ‘ab’+ ‘cd’ - concatenation

= 3% ‘eric’ - successive concatenation
"len(‘eric’) -2>thelength

Begins with index O
Attempting to index beyond
length — 1 is an error

= ‘eric’ [1] -2 indexing —

" ‘eric’ [1:3] - incing - Extracts sequence starting at first
index, and ending before second
index

- If no value before :, start at O

- If no value after :, end at length

- Ifjust :, make a copy of entire
sequence

6.00.1X LECTURE 8

6.00.1X LECTURE 9

INPUT/OUTPUT: print

= used to output stuff to console

" keyword is print

x =1

print (x)

X str = str(x)

print ("my fav num is", x, ".", "x =", x)

print ("my fav num is " 4+ x str + ". " + "x =" + X str)

6.00.1X LECTURE

INPUT/OUTPUT: input ("")

= prints whatever is within the quotes

= user types in something and hits enter
" returns entered sequence

= can bind that value to a variable so can reference
text = input ("Type anything... ")
print (b*text)

" input returns a string so must cast if working with numbers
num = 1int (input ("Type a number... "))
print (5*num)

6.00.1X LECTURE

6.00.1X LECTURE

IDE’s

= painful to just type things into a shell

= better to have a text editor — integrated development
environment (IDE)

o IDLE or Anaconda are examples

= comes with
o Text editor — use to enter, edit and save your programs

o Shell — place in which to interact with and run your
programs; standard methods to evaluate your programs
from the editor or from stored files

o Integrated debugger (we’ll use later)

6.00.1X LECTURE

20 Editor - /Users/ericgrimson/Dropbox (MIT)/Lecture201 Mew/Lecture2/printExample.py 00 IPython console
"y @ @ retirementpy @ @ printExamplepy @ © getStats.py = [lg; Console 1/A ‘ ™

1

ol

In [285]: runfile('/Users/ericgrimson/Dropbox

2IIIIII .
. A (MIT)/Lecture2@16New/Lecture2/printExample.py’,

i(rcatcd on Wed Jun 8§ 11114134 2016 wdir='/Users/ericgrimson/Dropbox (MIT)/Lecture2@l6New/Lecture2"')
! . . ; 1

g?ﬁﬂthor' ericgrimson my fav num is 1 . x = 1

7 my fav num is 1. x =1

8 -

O9x =1 In [206]:

10 print(x)
11x_str = str(x)

12 print("my fav num is", x, ".", "x =", x)
13print("my fav num is " + x_str + ". " + "x = " + x_str)
14

6.00.1X LECTURE

6.00.1X LECTURE

BRANCHING PROGRAMS
(REVISITED)

=The simplest branching statement

is a conditional
o A test (expression that evaluates to

True orFalse)

o A block of code to execute if the
testis True

> An optional block of code to
execute if the testis False

COI\/IPARISON OPERATORS ON
int and float

" i and j are any variable names

1>
i>=1
1<
i<=7

1i==7 - equality test, True if i equals]

i =79 - inequality test, True if 1 not equal to 7

LOGIC OPERATORS ON bools

" a and b are any variable names

not a - True ifaisFalse
Falseifais True

a and b =2 True if bothare True

a or b =2 True if either or both are True

CONTROL FLOW - BRANCHING

1f <condition>:
<expression>
<expression>

1f <condition>:
<expression>
<expression>

else:
<expression>
<expression>

1f <condition>:
<expression>
<expression>

elif <condition>:
<expression>
<expression>

else:
<expression>
<expression>

" <condition> hasavalue True or False

= evaluate expressions in that block if <condition> is True

6.00.1X LECTURE

USING CONTROL IN LOOPS

= simple branching programs just make choices, but
path through code is still linear

= sometimes want to reuse parts of the code
indeterminate number of times

You are in the Lost Forest. = You are playinga
TR video game, and are

Rt A i b b i i b b b ¢

o lost in some woods
P i b i b b b b i A iy .
P i b i b b b b i db i g " If you keep gOIng
Go left or right? right, takes you back

to this same screen,
stuck in a loop

1f <exit right>:
<set background to woods background>
1f <exit right>:
<set Dbackground to woods background>
1f <exit right>:
<set background to woods background>
and so on and on and on...
SIS
<set background to exit background>
else:
<set background to exit background>
else:

<set background to exit background>

6.00.1X LECTURE 21

You are in the Lost Forest. = You are playinga
TR video game, and are

Rt A i b b i i b b b ¢

o lost in some woods
kA Ak KKk),k KkKk*k*k*% .
kA Ak KKk kKK k*k*% " |fyou keep gOIng

Go left or right? right, takes you back
to this same screen,
stuck in a loop

while <exit right>:

<set background to woods background>
<set background to exit background>

6.00.1X LECTURE 22

CONTROL FLOW:
while LOOPS

while <condition>:

<expression>
<expression>

" <condition> evaluates to a Boolean

" if <condition> is True, do all the steps inside the
while code block

" check <condition> again

" repeat until <condition> isFalse

6.00.1X LECTURE

while LOOP EXAMPLE

You are in the Lost Forest.
Kk Kk Kk khkkkkkk kK%

LR b b b A b b i i b ¢
LR b b b A b b i i b ¢
LR b b b A b b i i b ¢

Go left or right?

n = input ("You are in the Lost Forest. Go left or right? ")
while n == "right":
n = 1nput("You are 1in the Lost Forest. Go left or right? ")

print ("You got out of the Lost Forest!”)

6.00.1X LECTURE

CONTROL FLOW:
while and for LOOPS

more complicated with while loop
n =0
while n < 5:

print (n)
n = n+l
shortcut with for loop “w&@S
for n in range (5): Qﬁ«@
. N2 QO
print (n) ﬁaimwv)

CONTROL FLOW: for LOOPS

for <variable> in range (<some num>) :
<expression>
<expression>

= each time through the loop, <variable> takes a value
= first time, <variable> starts at the smallest value
" next time, <variable> getsthe prevvalue +1

= etc.

6.00.1X LECTURE

range (start, stop, step)

" default values are start = 0and step = 1 andis optional

" [oop until valueis stop - 1

mysum = 0

for 1 in range (7, 10):
mysum += 1

print (mysum)

mysum = 0

for 1 1n range(5, 11, 2):
mysum += 1

print (mysum)

6.00.1X LECTURE

break STATEMENT

= immediately exits whatever loop it is in

= skips remaining expressions in code block

= exits only innermost loop

while <condition 1>:
while <condition 2>:
<expression a>
break
<expression b>

<exXpression c>

6.00.1X LECTURE

break STATEMENT

mysum = 0

for 1 in range (5, 11, 2):
mysum += 1
1f mysum == 5:
break

print (mysum)

= what happens in this program?

for VS

while LOOPS

for loops

= know number of
iterations

= can end early via
break

" uses a counter

= can rewritea for loop
usingawhile loop

while loops

= unbounded number of
iterations

" can end early via break

" can use a counter but
must initialize before loop
and increment it inside loop

" may not be able to
rewrite a while loop using
a for loop

6.00.1X LECTURE

6.00.1X LECTURE

I TERATION

= Concept of iteration let’s us extend
simple branching algorithms to be able to
write programs of arbitrary complexity

o Start with a test

o |f evaluates to True, then execute loop
body once, and go back to reevaluate the
test

o Repeat until test evaluates to False,
after which code following iteration
statement is executed

False

6.00.1X LECTURE

AN EXAMPLE

X = 3

ans = 0
itersleft = x
while (itersLeft != 0):
ans = ans + X
itersLeft = itersleft - 1

print (str(x) + '"*' + str(x) + ' ="' + str(ans))

This code squares the value of x by repetitive addition.

6.00.1X LECTURE

STEPPING THROUGH CODE
e P —rTTT

itersleft = x
while (i1terslLeft != 0):

ans = ans + X

itersleft = iterslLeft - 1

print (str(x) + '"*' + str(x) + ' = ' 4+ str(ans))

Some properties of iteration loops:

* need to set an iteration variable outside the loop

* need to test variable to determine when done

* need to change variable within the loop, in addition to other work

6.00.1X LECTURE 34

ITERATIVE CODE

" Branching structures (conditionals) let us jump to
different pieces of code based on a test

o Programs are constant time

" Looping structures (e.g., while) let us repeat pieces of
code until a condition is satisfied

> Programs now take time that depends on values of
variables, as well as length of program

6.00.1X LECTURE

6.00.1X LECTURE

CLASSES OF ALGORITHMS

"= |[terative algorithms allow us to do more complex
things than simple arithmetic

= We can repeat a sequence of steps multiple times
based on some decision; leads to new classes of
algorithms

= One useful example are “guess and check” methods

6.00.1X LECTURE

GUESS AND CHECK

= Remember our “declarative” definition of square root
of x

= |f we could guess possible values for square root (call
it g), then can use definition to check if g*g = x

= We just need a good way to generate guesses

6.00.1X LECTURE

-INDING CUBE ROOT OF
NTEGER

= One way to use this idea of generating guesses in
order to find a cube root of x is to first try 0**3, then
1**3,then 2**3, and so on

= Can stop when reach k suchthatk**3 > x

= Only a finite number of cases to try

SOME CODE

X = int (input ('Enter an integer: '))

ans = 0
while ans**3 < x:
ans = ans + 1
1f ans**3 = x:
print (str(x) + ' 1is not a perfect cube')
else:

print ('Cube root of ' + str(x) + ' 1s ' + str(ans))

6.00.1X LECTURE

EXTENDING SCOPE

= Only works for positive integers

= Easy to fix by keeping track of sign, looking for solution
to positive case

SOME CODE

X = int (input ('Enter an integer: '))

ans = 0
while ans**3 < abs(x):

ans = ans + 1
1f ans**3 != abs(x):

print (str(x) + ' 1is not a perfect cube')
else:

1f x < O:

ans = - ans

print ('Cube root of ' + str(x) + ' is ' + str(ans))

6.00.1X LECTURE

LOOP CHARACTERISTICS

= Need a loop variable
° Initialized outside loop
o Changes within loop
o Test for termination depends on variable

= Useful to think about a decrementing function
o Maps set of program variables into an integer

> When loop is entered, value is non-negative
> When value is <= 0, loop terminates, and
° Value is decreased every time through loop

" Here we can use abs (x) — ans**3

6.00.1X LECTURE

WHAT IF MISS A CONDITION?

= Suppose we don’t initialize the variable?

o Likely get a NamekError; or worse use an expected value to
initiate the computation

= Suppose we don’t change the variable inside the loop?

> Will end up in an infinite loop, never reaching the
terminating condition

6.00.1X LECTURE

GUESS-AND-CHECK

= you are able to guess a value for solution

= you are able to check if the solution is correct
= keep guessing until find solution or guessed all values

= the process is exhaustive enumeration

6.00.1X LECTURE

CLEANER GUESS-AND-CHECK
— cube root

cube = 8

for guess in range (cube+l) :

1f guess**3 == cube:

print ("Cube root of ", cube, ” 1s ", guess)

CLEANER GUESS-AND-CHECK
— cube root

cube = 8

for guess in range (abs (cube)+1) :
if guess**3 >= abs (cube) :
break
1f guess**3 != abs (cube) :

print (cube, "is not a perfect cube’)

else:
1f cube < O:
guess = —guess

print ('Cube root of ' + str(cube) + ' is ' + str(guess))

6.00.1X LECTURE

EXHAUSTIVE ENUMERATION

= Guess and check methods can work on problems with
a finite number of possibilities

= Exhaustive enumeration is a good way to generate
guesses in an organized manner

