
LOOPS and STRINGS,
GUESS-and-CHECK,
APPROXIMATION,
BISECTION

6.00.1X LECTURE 1

REVIEWING LOOPS
ans = 0

neg_flag = False

x = int(input("Enter an integer: "))

if x < 0:

neg_flag = True

while ans**2 < x:

ans = ans + 1

if ans**2 == x:

print("Square root of", x, "is", ans)

else:

print(x, "is not a perfect square”)

if neg_flag:

print("Just checking... did you mean", -x, "?”)

6.00.1X LECTURE 2

REVIEWING STRINGS
 think of as a sequence of case sensitive characters

 can compare strings with ==, >, < etc.

 len() is a function used to retrieve the length of the
string in the parentheses

 square brackets used to perform indexing into a string
to get the value at a certain index/position
s = "abc"

len(s) evaluates to 3
s[0] evaluates to "a"
s[1] evaluates to "b"
s[3] trying to index out of bounds, error

index: 0 1 2 indexing always starts at 0

6.00.1X LECTURE 3

STRINGS
 can slice strings using [start:stop:step]
s = "abcdefgh"

s[::-1] evaluates to "hgfedbca"
s[3:6] evaluates to "def"
s[-1] evaluates to "h"

 strings are “immutable” – cannot be modified
s = "hello"

s[0] = 'y' gives an error
s = 'y'+s[1:len(s)] is allowed

s is a new object

6.00.1X LECTURE 4

s

"hello"

"yello"

FOR LOOPS RECAP
 for loops have a loop variable that iterates over a set of
values

for var in range(4):

<expressions>

◦ var iterates over values 0,1,2,3

◦ expressions inside loop executed with each value for var

for var in range(4,8):

<expressions>

◦ var iterates over values 4,5,6,7

 range is a way to iterate over numbers, but a for loop
variable can iterate over any set of values, not just numbers!

6.00.1X LECTURE 5

STRINGS AND LOOPS

s = "abcdefgh"

for index in range(len(s)):

if s[index] == 'i' or s[index] == 'u':

print("There is an i or u”)

for char in s:

if char == 'i' or char == 'u':

print("There is an i or u”)

6.00.1X LECTURE 6

CODE EXAMPLE
an_letters = "aefhilmnorsxAEFHILMNORSX”

word = input("I will cheer for you! Enter a word: ")

times = int(input("Enthusiasm level (1-10): "))

i = 0

while i < len(word):

char = word[i]

if char in an_letters:

print("Give me an " + char + "! " + char)

else:

print("Give me a " + char + "! " + char)

i += 1

print("What does that spell?”)

for i in range(times):

print(word, "!!!”)

6.00.1X LECTURE 7

6.00.1X LECTURE 8

APPROXIMATE SOLUTIONS
 suppose we now want to find the root of any non-
negative number?

 can’t guarantee exact answer, but just look for
something close enough

 start with exhaustive enumeration
◦ take small steps to generate guesses in order

◦ check to see if close enough

6.00.1X LECTURE 9

APPROXIMATE SOLUTIONS
 good enough solution

 start with a guess and increment by some small value

 |guess3|-cube <= epsilon

for some small epsilon

 decreasing increment size slower program

 increasing epsilon less accurate answer

6.00.1X LECTURE 10

APPROXIMATE SOLUTION
– cube root
cube = 27

epsilon = 0.01

guess = 0.0

increment = 0.0001

num_guesses = 0

while abs(guess**3 - cube) >= epsilon:

guess += increment

num_guesses += 1

print('num_guesses =', num_guesses)

if abs(guess**3 - cube) >= epsilon:

print('Failed on cube root of', cube)

else:

print(guess, 'is close to the cube root of', cube)

and guess <= cube :

6.00.1X LECTURE 11

Some observations
 Step could be any small number

◦ If too small, takes a long time to find square root

◦ If too large, might skip over answer without getting close
enough

 In general, will take x/step times through code to find
solution

 Need a more efficient way to do this

6.00.1X LECTURE 12

6.00.1X LECTURE 13

BISECTION SEARCH
We know that the square root of x lies between 1 and
x, from mathematics

 Rather than exhaustively trying things starting at 1,
suppose instead we pick a number in the middle of this
range

 If we are lucky, this answer is close enough

1 x

g

6.00.1X LECTURE 14

BISECTION SEARCH
 If not close enough, is guess too big or too small?

 If g**2 > x, then know g is too big; but now search

 And if, for example, this new g is such that g**2 < x,
then know too small; so now search

 At each stage, reduce range of values to search by half

1 x

gnew g

1 x

gnew g next g

6.00.1X LECTURE 15

EXAMPLE OF SQUARE ROOT
x = 25

epsilon = 0.01

numGuesses = 0

low = 1.0

high = x

ans = (high + low)/2.0

while abs(ans**2 - x) >= epsilon:

print('low = ' + str(low) + ' high = ' + str(high) + ' ans = ' + str(ans))

numGuesses += 1

if ans**2 < x:

low = ans

else:

high = ans

ans = (high + low)/2.0

print('numGuesses = ' + str(numGuesses))

print(str(ans) + ' is close to square root of ' + str(x))

6.00.1X LECTURE 16

BISECTION SEARCH
– cube root
cube = 27

epsilon = 0.01

num_guesses = 0

low = 1

high = cube

guess = (high + low)/2.0

while abs(guess**3 - cube) >= epsilon:

if guess**3 < cube :

low = guess

else:

high = guess

guess = (high + low)/2.0

num_guesses += 1

print('num_guesses =', num_guesses)

print(guess, 'is close to the cube root of', cube)

6.00.1X LECTURE 17

BISECTION SEARCH
CONVERGENCE
 search space

◦ first guess: N/2
◦ second guess: N/4
◦ gth guess: N/2g

 guess converges on the order of log2N steps

 bisection search works when value of function varies
monotonically with input

 code as shown only works for positive cubes > 1 – why?

 challenges modify to work with negative cubes!
modify to work with x < 1!

6.00.1X LECTURE 18

x < 1
 if x < 1, search space is 0 to x but cube root is greater
than x and less than 1

modify the code to choose the search space
depending on value of x

6.00.1X LECTURE 19

SOME OBSERVATIONS
 Bisection search radically reduces computation time –
being smart about generating guesses is important

 Should work well on problems with “ordering”
property – value of function being solved varies
monotonically with input value
◦ Here function is g**2; which grows as g grows

6.00.1X LECTURE 20

6.00.1X LECTURE 21

DEALING WITH float’s
 Floats approximate real numbers, but useful to
understand how

 Decimal number:
◦ 302 = 3*102 + 0*101 + 2*100

 Binary number
◦ 10011 = 1*24 + 0*23 + 0*22 + 1*21 + 1*20

◦ (which in decimal is 16 + 2 + 1 = 19)

 Internally, computer represents numbers in binary

6.00.1X LECTURE 22

CONVERTING DECIMAL
INTEGER TO BINARY
 Consider example of

◦ x = 1*24 + 0*23 + 0*22 + 1*21 + 1*20 = 10011

 If we take remainder relative to 2 (x%2) of this number,
that gives us the last binary bit

 If we then divide x by 2 (x//2), all the bits get shifted
right
◦ x//2 = 1*23 + 0*22 + 0*21 + 1*20 = 1001

 Keep doing successive divisions; now remainder gets next
bit, and so on

 Let’s us convert to binary form

6.00.1X LECTURE 23

DOING THIS IN PYTHON
if num < 0:

isNeg = True

num = abs(num)

else:

isNeg = False

result = ‘‘

if num == 0:

result = ‘0’

while num > 0:

result = str(num%2) + result

num = num//2

if isNeg:

result = ‘-’ + result

6.00.1X LECTURE 24

WHAT ABOUT FRACTIONS?
 3/8 = 0.375 = 3*10-1 + 7*10-2 + 5*10-3

 So if we multiply by a power of 2 big enough to
convert into a whole number, can then convert to
binary, and then divide by the same power of 2

 0.375 * (2**3) = 3 (decimal)

 Convert 3 to binary (now 11)

 Divide by 2**3 (shift right) to get 0.011 (binary)

6.00.1X LECTURE 25

x = float(input('Enter a decimal number between 0 and 1: '))

p = 0

while ((2**p)*x)%1 != 0:

print('Remainder = ' + str((2**p)*x - int((2**p)*x)))

p += 1

num = int(x*(2**p))

result = ''

if num == 0:

result = '0'

while num > 0:

result = str(num%2) + result

num = num//2

for i in range(p - len(result)):

result = '0' + result

result = result[0:-p] + '.' + result[-p:]

print('The binary representation of the decimal ' + str(x) + ' is

' + str(result))

6.00.1X LECTURE 26

SOME IMPLICATIONS
If there is no integer p such that x*(2**p) is a whole
number, then internal representation is always an
approximation

Suggest that testing equality of floats is not exact
◦ Use abs(x-y) < some small number, rather than x == y

Why does print(0.1) return 0.1, if not exact?
◦ Because Python designers set it up this way to

automatically round

6.00.1X LECTURE 27

6.00.1X LECTURE 28

NEWTON-RAPHSON
 General approximation algorithm to find roots of a
polynomial in one variable

p(x) = anxn + an-1xn-1 + … + a1x + a0

Want to find r such that p(r) = 0

 For example, to find the square root of 24, find the root of
p(x) = x2 – 24

 Newton showed that if g is an approximation to the root,
then

g – p(g)/p’(g)

is a better approximation; where p’ is derivative of p

6.00.1X LECTURE 29

NEWTON-RAPHSON
Simple case: cx2 + k

First derivative: 2cx

So if polynomial is x2 + k, then derivative is 2x

Newton-Raphson says given a guess g for root, a better
guess is

g – (g2 –k)/2g

6.00.1X LECTURE 30

NEWTON-RAPHSON
This gives us another way of generating guesses, which we can check; very efficient

epsilon = 0.01

y = 24.0

guess = y/2.0

numGuesses = 0

while abs(guess*guess - y) >= epsilon:

numGuesses += 1

guess = guess - (((guess**2) - y)/(2*guess))

print(‘numGuesses = ‘ + str(numGuesses))

print('Square root of ' + str(y) + ' is about ' + str(guess))

6.00.1X LECTURE 31

Iterative algorithms
 Guess and check methods build on reusing same code

◦ Use a looping construct to generate guesses, then check
and continue

 Generating guesses
◦ Exhaustive enumeration

◦ Bisection search

◦ Newton-Raphson (for root finding)

6.00.1X LECTURE 32

