DECOMPOSITION, ABSTRACTION, FUNCTIONS

February 22, 2016 6.0001 LECTURE 6 1

HOW DO WE WRITE CODE?

- so far…
	- covered language mechanisms
	- know how to write different files for each computation
	- each file is some piece of code
	- each code is a sequence of instructions
- **Peroblems with this approach**
	- easy for small-scale problems
	- messy for larger problems
	- hard to keep track of details
	- how do you know the right info is supplied to the right part of code

GOOD PROGRAMMING

- more code not necessarily a good thing
- measure good programmers by the amount of functionality
- introduce **functions**
- mechanism to achieve **decomposition** and **abstraction**

EXAMPLE -- PROJECTOR

- a projector is a black box
- **don't know how it works**
- \blacksquare know the interface: input/output

http://www.myprojectorlamps.com/blog/wp-content/ uploads/Dell-1610HD-Projector.jpg

- connect any electronics to it that can communicate with that input
- black box somehow converts image from input source to a wall, magnifying it
- **ABSTRACTION IDEA:** do not need to know how projector works to use it

EXAMPLE -- PROJECTOR

- **Perofecting large image for** Olympics decomposed into separate tasks for separate projectors
- each projector takes input and produces separate output
- **all projectors work together** to produce larger image
- **DECOMPOSITION IDEA**: different devices work together to achieve an end goal

By Adenosine (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons

APPLY THESE IDEAS TO PROGRAMMING

PIDECOMPOSITION

• Break problem into different, self-contained, pieces

E ABSTRACTION

• Suppress details of method to compute something from use of that computation

CREATE STRUCTURE with DECOMPOSITION

- in example, separate devices
- in programming, divide code into **modules**
	- are **self-contained**
	- used to **break up** code
	- intended to be **reusable**
	- keep code **organized**
	- **keep code coherent**
- this lecture, achieve decomposition with **functions**
- **I** in a few weeks, achieve decomposition with **classes**

SUPPRESS DETAILS with ABSTRACTION

- in example, no need to know how to build a projector
- in programming, think of a piece of code as a **black box**
	- cannot see details
	- do not need to see details
	- do not want to see details
	- hide tedious coding details
- achieve abstraction with **function specifications** or **docstrings**

DECOMPOSITION & ABSTRACTION

- powerful together
- \blacksquare code can be used many times but only has to be debugged once!

FUNCTIONS

- write reusable piece/chunks of code, called **functions**
- **functions are not run in a program until they are** "**called**" or "**invoked**" in a program
- **function characteristics:**
	- has a **name**
	- has **parameters** (0 or more)
	- has a **docstring** (optional but recommended)
	- has a **body**

HOW TO WRITE and

IN THE FUNCTION BODY

```
def is even( i ):
```
"""

Input: i, a positive int

Returns True if i is even, otherwise False

www.

print("hi") evaluate some

return is a return of the return of the sound of the s """ print("hi") $r = 0$
 $r = 0$ keyword

- **formal parameter** gets bound to the value of **actual parameter** when function is called
- **new scope/frame/environment** created when enter a function
- **Scope** is mapping of names to objects

February 22, 2016

- **formal parameter** gets bound to the value of **actual parameter** when function is called
- **new scope/frame/environment** created when enter a function
- **Scope** is mapping of names to objects

- **formal parameter** gets bound to the value of **actual parameter** when function is called
- **new scope/frame/environment** created when enter a function
- **Scope** is mapping of names to objects

- **formal parameter** gets bound to the value of **actual parameter** when function is called
- **new scope/frame/environment** created when enter a function
- **Scope** is mapping of names to objects

```
def f( x ):
    x = x + 1print ('in f(x): x =', x)
    return x
x = 3z = f(x)binding of returned value to 
               variable z
```


ONE WARNING IF NO return STATEMENT

```
def is even( i ):
    """ 
    Input: i, a positive int
    Does not return anything
    """
    i\frac{1}{82} = 0<br>without a return
```
- Python returns the value **None, if no return given**
- **Peropresents the absence of a value**

return vs. print

- \blacksquare return only has meaning **inside** a function
- only **one** return executed inside a function
- code inside function but after return statement not executed
- has a value associated with it, **given to function caller**
- print can be used **outside** functions
- can execute **many** print statements inside a function
- code inside function can be executed after a print statement
- has a value associated with it, **outputted** to the console

FUNCTIONS AS ARGUMENTS

■ arguments can take on any type, even functions

SCOPE EXAMPLE

- **F** inside a function, **can access** a variable defined outside
- **Example 2 a** function, **cannot modify** a variable defined outside

SCOPE EXAMPLE

- **F** inside a function, **can access** a variable defined outside
- **Example 2 a** function, **cannot modify** a variable defined outside

HARDER SCOPE EXAMPLE

Python Tutor is your best friend to help sort this out!

<http://www.pythontutor.com/>

def g(x): def h(): $x = 'abc'$ $x = x + 1$ print ('in $g(x)$: $x = '$, x) h() return x $x = 3$ $z = g(x)$ g x z

def g(x): def h(): $x = 'abc'$ $x = x + 1$ print ('in $g(x)$: $x = '$, x) $h()$ return x $x = 3$ $z = g(x)$

KEYWORD ARGUMENTS AND DEFAULT VALUES

 Simple function definition, if last argument is TRUE, then print lastName, firstName; else firstName, lastName

```
def printName(firstName, lastName, reverse):
    if reverse:
        print(lastName + \prime, \prime + firstName)
    else:
        print(firstName, lastName)
```
KEYWORD ARGUMENTS AND DEFAULT VALUES

\blacksquare Each of these invocations is equivalent

printName('Eric', 'Grimson', False)

printName('Eric', 'Grimson', reverse = False)

printName('Eric', lastName = 'Grimson', reverse = False)

```
printName(lastName = 'Grimson', firstName = 'Eric',
          reverse = False)
```
KEYWORD ARGUMENTS AND DEFAULT VALUES

 Can specify that some arguments have default values, so if no value supplied, just use that value

```
def printName(firstName, lastName, reverse = False):
    if reverse:
        print(lastName + \prime, \prime + firstName)
    else:
        print(firstName, lastName)
printName('Eric', 'Grimson')
```

```
printName('Eric', 'Grimson', True)
```
SPECIFICATIONS

- a **contract** between the implementer of a function and the clients who will use it
	- **Assumptions:** conditions that must be met by clients of the function; typically constraints on values of parameters
	- **Guarantees:** conditions that must be met by function, providing it has been called in manner consistent with assumptions
```
def is even( i ):
    """ 
    Input: i, a positive int
    Returns True if i is even, otherwise False
    TV TV TV
    print "hi"
    return i \, \frac{1}{2} == 0
```
is_even(3)

WHAT IS RECURSION

- a way to design solutions to problems by **divide-andconquer or decrease-and-conquer**
- a programming technique where a **function calls itself**
- in programming, goal is to NOT have infinite recursion
	- must have **1 or more base cases** that are easy to solve
	- must solve the same problem on **some other input** with the goal of simplifying the larger problem input

ITERATIVE ALGORITHMS SO FAR

- **Iooping constructs (while and for loops) lead to iterative** algorithms
- can capture computation in a set of **state variables** that update on each iteration through loop

MULTIPLICATION – ITERATIVE SOLUTION

- \blacksquare "multiply $a * b$ " is equivalent to "add a to itself b times"
- capture **state** by
	- an **iteration** number (i) starts at b
		- $i \leftarrow i-1$ and stop when 0
	- a current **value of computation** (result) result \leftarrow result + a

MULTIPLICATION – RECURSIVE SOLUTION

recursive step

• think how to reduce problem to a **simpler/smaller version** of same problem

base case

- keep reducing problem until reach a simple case that can be **solved directly**
- when $b = 1$, $a * b = a$

FACTORIAL

 $n! = n*(n-1)*(n-2)*(n-3)*... * 1$

- \blacksquare what n do we know the factorial of? $n = 1$ \rightarrow if $n == 1$: return 1 basecase
- how to reduce problem? Rewrite in terms of something simpler to reach base case $n^*(n-1)!$ \rightarrow else:

return $n*factorial(n-1)$
cteP

RECURSIVE FUNCTION SCOPE EXAMPLE

def fact(n): if $n == 1$: return 1 else: return n*fact(n-1)

print(fact(4))

SOME OBSERVATIONS

- each recursive call to a function creates its
 OWN SCODE/Environment own scope/environment
- **Example 1 bindings of variables** in a scope is not changed by recursive call
- flow of control passes back to **previous scope** once function call returns value

using the same variable

ames the same variable

ITERATION vs. RECURSION

def factorial iter(n): def factorial(n): prod = 1 for i in range $(1, n+1)$: prod *= i return prod if $n == 1$: return 1 else: return n*factorial(n-1)

- **E** recursion may be simpler, more intuitive
- **EXT** recursion may be efficient from programmer POV
- **F** recursion may not be efficient from computer POV

INDUCTIVE REASONING

- \blacksquare How do we know that our recursive code will work?
- $mult$ iter terminates because b is initially positive, and decreases by 1 each time around loop; thus must eventually become less than 1
- $mult$ called with $b = 1$ has no recursive call and stops
- \blacksquare mult called with b > 1 makes a recursive call with a smaller version of b; must eventually reach call with $b = 1$

```
def mult iter(a, b):
    result = 0while b > 0:
        result += a
        b = 1return result
def mult(a, b):
    if b == 1:
        return a
    else:
```
return $a + \text{mult}(a, b-1)$

MATHEMATICAL INDUCTION

- To prove a statement indexed on integers is true for all values of n:
	- Prove it is true when n is smallest value (e.g. $n = 0$ or $n = 1$)
	- Then prove that if it is true for an arbitrary value of n, one can show that it must be true for n+1

EXAMPLE OF INDUCTION

- $= 0 + 1 + 2 + 3 + ... + n = (n(n+1))/2$
- Proof
	- If $n = 0$, then LHS is 0 and RHS is $0*1/2 = 0$, so true
	- Assume true for some k, then need to show that
		- 0 + 1 + 2 + ... + k + (k+1) = ((k+1)(k+2))/2
		- LHS is $k(k+1)/2 + (k+1)$ by assumption that property holds for problem of size k
		- \circ This becomes, by algebra, $((k+1)(k+2))/2$
	- Hence expression holds for all $n >= 0$

RELEVANCE TO CODE?

Same logic applies

```
def mult(a, b):
    if b == 1:
       return a
```
else:

```
return a + \text{mult}(a, b-1)
```
- **Base case, we can show that mult must return correct answer**
- For recursive case, we can assume that $mult$ correctly returns an answer for problems of size smaller than b, then by the addition step, it must also return a correct answer for problem of size b
- **Thus by induction, code correctly returns answer**

TOWERS OF HANOI

- The story:
	- 3 tall spikes
	- Stack of 64 different sized discs start on one spike
	- Need to move stack to second spike (at which point universe ends)
	- Can only move one disc at a time, and a larger disc can never cover up a small disc

By André Karwath aka Aka (Own work) [CC BY-SA 2.5 (http://creativecommons.org/licenses/by-sa/2.5)], via Wikimedia Commons

TOWERS OF HANOI

■ Having seen a set of examples of different sized stacks, how would you write a program to print out the right set of moves?

Think recursively!

- Solve a smaller problem
- Solve a basic problem
- Solve a smaller problem

```
def printMove(fr, to):
   print('move from ' + str(fr) + ' to ' + str(to))
def Towers(n, fr, to, spare):
    if n == 1:
        printMove(fr, to)
    else:
        Towers(n-1, fr, spare, to)
        Towers(1, fr, to, spare)
        Towers(n-1, spare, to, fr)
```
RECURSION WITH MULTIPLE BASE CASES

- Fibonacci numbers
	- Leonardo of Pisa (aka Fibonacci) modeled the following challenge
		- Newborn pair of rabbits (one female, one male) are put in a pen
		- Rabbits mate at age of one month
		- Rabbits have a one month gestation period
		- Assume rabbits never die, that female always produces one new pair (one male, one female) every month from its second month on.
		- How many female rabbits are there at the end of one year?

Demo courtesy of Prof. Denny Freeman and Adam Hartz

Demo courtesy of Prof. Denny Freeman and Adam Hartz

FIBONACCI

After one month (call it 0) – 1 female

After second month – still 1 female (now pregnant)

After third month – two females, one pregnant, one not

```
In general, females(n) = females(n-1) +
females(n-2)
```
- Every female alive at month n-2 will produce one female in month n;
- These can be added those alive in month n-1 to get total alive in month n

FIBONACCI

- Base cases:
	- Females $(0) = 1$
	- Females $(1) = 1$
- Recursive case
	- Females(n) = Females(n-1) + Females(n-2)

def **fib**(x): """assumes x an int >= 0 returns Fibonacci of x""" if $x == 0$ or $x == 1$: return 1 else: return $fib(x-1) + fib(x-2)$

RECURSION ON NON-NUMERICS

- how to check if a string of characters is a palindrome, i.e., reads the same forwards and backwards
	- "Able was I, ere I saw Elba" attributed to Napoleon
	- "Are we not drawn onward, we few, drawn onward to new era?" attributed to Anne Michaels

(http://creativecommons.org/licenses/by-sa/2.0)], (http://creativecommons.org/licenses/by/3.0)], via By Larth_Rasnal (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC BY 3.0 Wikimedia Commons

By Beinecke Library (Flickr: [General Napolean Bonaparte]) [CC BY-SA 2.0 via Wikimedia Commons

February 22, 2016 6.0001 LECTURE 6 72
SOLVING RECURSIVELY?

- \blacksquare First, convert the string to just characters, by stripping out punctuation, and converting upper case to lower case
- \blacksquare Then
	- Base case: a string of length 0 or 1 is a palindrome
	- Recursive case:
		- If first character matches last character, then is a palindrome if middle section is a palindrome

EXAMPLE

- "Able was I, ere I saw Elba' \rightarrow 'ablewasiereisawleba'
- "isPalindrome('ablewasiereisawleba') is same as
	- $\bullet 'a' == 'a'$ and isPalindrome('blewasiereisawleb')

```
def isPalindrome(s):
    def toChars(s):
        s = s.lower()ans = \cdot \cdotfor c in s:
             if c in 'abcdefghijklmnopqrstuvwxyz':
                 ans = ans + creturn ans
    def isPal(s):
        if len(s) \leq 1:
            return True
        else:
             return s[0] == s[-1] and isPal(s[1:-1])
    return isPal(toChars(s))
```
DIVIDE AND CONQUER

- an example of a "divide and conquer" algorithm
- solve a hard problem by breaking it into a set of subproblems such that:
	- sub-problems are easier to solve than the original
	- solutions of the sub-problems can be combined to solve the original

MODULES AND FILES

- have assumed that all our code is stored in one file
- cumbersome for large collections of code, or for code that should be used by many different other pieces of programming
- **a module** is a . py file containing a collection Python definitions and statements

EXAMPLE MODULE

- \blacksquare the file circle.py contains
- pi = 3.14159
- def area(radius):

return pi*(radius**2)

def circumference(radius):

return 2*pi*radius

EXAMPLE MODULE

■ then we can import and use this module:

import circle

 $pi = 3$

print(pi)

print(circle.pi)

print(circle.area(3))

print(circle.circumference(3))

results in the following being printed:

3

3.14159

28.27431

```
18.849539999999998
```
OTHER IMPORTING

 \blacksquare if we don't want to refer to functions and variables by their module, and the names don't collide with other bindings, then we can use:

```
from circle import *
print(pi)
```

```
print(area(3))
```
- \blacksquare this has the effect of creating bindings within the current scope for all objects defined within circle
- statements within a module are executed only the first time a module is imported

FILES

- need a way to save our work for later use
- \blacksquare every operating system has its own way of handling files; Python provides an operating-system independent means to access files, using a **file handle**

 $nameHandle = open('kids', 'w')$

 \blacksquare creates a file named $kids$ and returns file handle which we can name and thus reference. The w indicates that the file is to opened for writing into.

FILES: example

 $nameHandle = open('kids', 'w')$ for i in range(2): name = input('Enter name: ') nameHandle.write(name + $'$) nameHandle.close()

FILES: example

```
nameHandle = open('kids', 'r')
```
for line in nameHandle:

print(line)

```
nameHandle.close()
```