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HOW DO WE WRITE CODE?
 so far…
• covered language mechanisms

• know how to write different files for each computation

• each file is some piece of code

• each code is a sequence of instructions

 problems with this approach
• easy for small-scale problems

• messy for larger problems

• hard to keep track of details

• how do you know the right info is supplied to the right 
part of code
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GOOD PROGRAMMING
more code not necessarily a good thing

measure good programmers by the amount of 
functionality

 introduce functions

mechanism to achieve decomposition and abstraction
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EXAMPLE -- PROJECTOR
 a projector is a black box

 don’t know how it works

 know the interface: input/output

 connect any electronics to it that can communicate 
with that input

 black box somehow converts image from input source 
to a wall, magnifying it

 ABSTRACTION IDEA: do not need to know how 
projector works to use it
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EXAMPLE -- PROJECTOR
 projecting large image for 
Olympics decomposed into 
separate tasks for separate 
projectors

 each projector takes input 
and produces separate output

 all projectors work together 
to produce larger image

 DECOMPOSITION IDEA: 
different devices work 
together to achieve an end 
goal
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By Adenosine (Own work) [CC BY-SA 3.0 
(http://creativecommons.org/licenses/by-sa/3.0) or 
GFDL (http://www.gnu.org/copyleft/fdl.html)], via 
Wikimedia Commons



APPLY THESE IDEAS TO 
PROGRAMMING
 DECOMPOSITION 
• Break problem into different, self-contained, pieces

 ABSTRACTION
• Suppress details of method to compute something from 

use of that computation
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CREATE STRUCTURE with 
DECOMPOSITION
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 in example, separate devices

 in programming, divide code into modules 
• are self-contained

• used to break up code

• intended to be reusable

• keep code organized

• keep code coherent

 this lecture, achieve decomposition with functions

 in a few weeks, achieve decomposition with classes
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SUPPRESS DETAILS with 
ABSTRACTION

6.0001 LECTURE 6 8

 in example, no need to know how to build a projector

 in programming, think of a piece of code as a black box
• cannot see details

• do not need to see details

• do not want to see details

• hide tedious coding details

 achieve abstraction with function specifications or 
docstrings
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DECOMPOSITION & 
ABSTRACTION
 powerful together

 code can be used many times but only has to be 
debugged once!
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FUNCTIONS
 write reusable piece/chunks of code, called functions

 functions are not run in a program until they are 
“called” or “invoked” in a program

 function characteristics:
• has a name

• has parameters (0 or more)

• has a docstring (optional but recommended)

• has a body
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def is_even( i ):

"""

Input: i, a positive int

Returns True if i is even, otherwise False

"""

print("hi”)

return i%2 == 0

is_even(3)

HOW TO WRITE and 
CALL/INVOKE A FUNCTION
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def is_even( i ):

""" 

Input: i, a positive int

Returns True if i is even, otherwise False

"""

print("hi”)

return i%2 == 0

IN THE FUNCTION BODY
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VARIABLE SCOPE
 formal parameter gets bound to the value of 
actual parameter when function is called 

 new scope/frame/environment created when enter a function

 scope is mapping of names to objects

def f( x ):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f( x )
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Global scope

f

x

z

Some 
code

f scope

x 3

3
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call to f, before 
body evaluated



 formal parameter gets bound to the value of 
actual parameter when function is called 

 new scope/frame/environment created when enter a function

 scope is mapping of names to objects

def f( x ):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f( x )

VARIABLE SCOPE
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VARIABLE SCOPE
 formal parameter gets bound to the value of 
actual parameter when function is called 

 new scope/frame/environment created when enter a function

 scope is mapping of names to objects

def f( x ):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f( x )
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VARIABLE SCOPE
 formal parameter gets bound to the value of 
actual parameter when function is called 

 new scope/frame/environment created when enter a function

 scope is mapping of names to objects

def f( x ):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f( x )
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Global scope
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3
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binding of returned value to 
variable z



ONE WARNING IF NO 
return STATEMENT
def is_even( i ):

""" 

Input: i, a positive int

Does not return anything

"""

i%2 == 0

 Python returns the value None, if no return given

 represents the absence of a value
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return vs.        print
 return only has meaning 
inside a function

 only one return executed 
inside a function

 code inside function but 
after return statement not 
executed

 has a value associated 
with it, given to function 
caller

 print can be used outside
functions

 can execute many print
statements inside a function

 code inside function can be 
executed after a print 
statement

 has a value associated with 
it, outputted to the console
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FUNCTIONS AS ARGUMENTS
 arguments can take on any type, even functions

def func_a():

print('inside func_a’)

def func_b(y):

print('inside func_b’)

return y

def func_c(z):

print('inside func_c’)

return z()

print(func_a())

print(5 + func_b(2))

print(func_c(func_a))
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 inside a function, can access a variable defined outside

 inside a function, cannot modify a variable defined 
outside

SCOPE EXAMPLE
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def g(y):

print(x)

print(x + 1)

x = 5

g(x)

print(x)

def h(y):

x = x + 1

x = 5

h(x)

print(x)

def f(y):

x = 1

x += 1

print(x)

x = 5

f(x)

print(x)
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 inside a function, can access a variable defined outside

 inside a function, cannot modify a variable defined 
outside

SCOPE EXAMPLE
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def g(y):

print x

x = 5

g(2)

print x

def h(y):

x = x + 1

x = 5

h(2)

print x

def f(y):

x = 1

x += 1

print x

x = 5

f(2)

print x
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HARDER SCOPE EXAMPLE

Python Tutor is your best friend to 
help sort this out!

http://www.pythontutor.com/

IMPORTANT 
and

TRICKY!
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def g(x):

def h():

x = 'abc'

x = x + 1

print('in g(x): x =', x)

h()

return x

x = 3

z = g(x)

SCOPE DETAILS
Global scope

g

x

z

Some 
code

3
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SCOPE DETAILS
g scope

x 

h Some 
code

3
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def g(x):

def h():

x = 'abc'

x = x + 1

print('in g(x): x =', x)

h()

return x

x = 3

z = g(x)

Global scope

g

x

z

Some 
code

3
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SCOPE DETAILS
g scope

x 

h Some 
code

34

6.0001 LECTURE 6 27

def g(x):

def h():

x = 'abc'

x = x + 1

print('in g(x): x =', x)

h()

return x

x = 3

z = g(x)

Global scope

g

x

z
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code

3
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SCOPE DETAILS
def g(x):

def h():

x = 'abc'

x = x + 1

print('in g(x): x =', x)

h()

return x

x = 3

z = g(x)

Global scope

g

x

z

Some 
code

3

g scope

x 

h Some 
code

3

h scope

x
“abc”4
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SCOPE DETAILS
g scope

x 

h Some 
code

None

4
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def g(x):

def h():

x = 'abc'

x = x + 1

print('in g(x): x =', x)

h()

return x

x = 3

z = g(x)

Global scope

g

x

z

Some 
code

3
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SCOPE DETAILS
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def g(x):

def h():

x = 'abc'

x = x + 1

print('in g(x): x =', x)

h()

return x

x = 3

z = g(x)

Global scope

g

x

z

Some 
code

3

4
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KEYWORD ARGUMENTS AND 
DEFAULT VALUES
 Simple function definition, if last argument is TRUE, 
then print lastName, firstName; else firstName, 
lastName

def printName(firstName, lastName, reverse):

if reverse:

print(lastName + ‘, ‘ + firstName)

else:

print(firstName, lastName)
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KEYWORD ARGUMENTS AND 
DEFAULT VALUES

 Each of these invocations is equivalent

printName(‘Eric’, ‘Grimson’, False)

printName(‘Eric’, ‘Grimson’, reverse = False)

printName(‘Eric’, lastName = ‘Grimson’, reverse = False)

printName(lastName = ‘Grimson’, firstName = ‘Eric’,

reverse = False)
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KEYWORD ARGUMENTS AND 
DEFAULT VALUES

 Can specify that some arguments have default values, so if no 
value supplied, just use that value

def printName(firstName, lastName, reverse = False):

if reverse:

print(lastName + ‘, ‘ + firstName)

else:

print(firstName, lastName)

printName(‘Eric’, ‘Grimson’)

printName(‘Eric’, ‘Grimson’, True)
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SPECIFICATIONS
 a contract between the implementer of a function and 
the clients who will use it
• Assumptions: conditions that must be met by clients of 

the function; typically constraints on values of parameters

• Guarantees: conditions that must be met by function, 
providing it has been called in manner consistent with 
assumptions
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def is_even( i ):

""" 

Input: i, a positive int

Returns True if i is even, otherwise False

"""

print "hi"

return i%2 == 0

is_even(3)
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WHAT IS RECURSION
 a way to design solutions to problems by divide-and-
conquer or decrease-and-conquer

 a programming technique where a function calls itself

 in programming, goal is to NOT have infinite recursion
• must have 1 or more base cases that are easy to solve

• must solve the same problem on some other input with 
the goal of simplifying the larger problem input
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ITERATIVE ALGORITHMS SO FAR
 looping constructs (while and for loops) lead to 
iterative algorithms

 can capture computation in a set of state variables
that update on each iteration through loop
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MULTIPLICATION –
ITERATIVE SOLUTION
 “multiply a * b” is equivalent to “add a to itself b times”

 capture state by 
• an iteration number (i) starts at b

i  i-1 and stop when 0
• a current value of computation (result)

result  result + a

def mult_iter(a, b):

result = 0

while b > 0:

result += a

b -= 1

return result
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a*b = a + a + a + a + … + a

= a + a + a + a + … + a

= a + a * (b-1)

MULTIPLICATION –
RECURSIVE SOLUTION
 recursive step
• think how to reduce 

problem to a 
simpler/smaller 
version of same 
problem 

 base case
• keep reducing 

problem until reach a 
simple case that can 
be solved directly

• when b = 1, a*b = a
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def mult(a, b):

if b == 1:

return a

else:

return a + mult(a, b-1)



FACTORIAL
n! = n*(n-1)*(n-2)*(n-3)* … * 1

 what n do we know the factorial of?
n = 1  if n == 1:

return 1 

 how to reduce problem? Rewrite in terms of 
something simpler to reach base case
n*(n-1)!  else: 

return n*factorial(n-1)
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RECURSIVE 
FUNCTION 
SCOPE 
EXAMPLE

Global scope

fact Some 
code

fact scope
(call w/ n=4)

n
4

fact scope
(call w/ n=3)

n
3

fact scope
(call w/ n=2)

n
2

fact scope
(call w/ n=1)

n
1
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def fact(n):

if n == 1:

return 1

else:

return n*fact(n-1)

print(fact(4))



SOME OBSERVATIONS

 each recursive call to a function creates its 
own scope/environment

 bindings of variables in a scope is not 
changed by recursive call

 flow of control passes back to previous 
scope once function call returns value
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ITERATION vs. RECURSION 
def factorial_iter(n):

prod = 1

for i in range(1,n+1):

prod *= i

return prod

def factorial(n):

if n == 1:

return 1

else:

return n*factorial(n-1)
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 recursion may be simpler, more intuitive 
 recursion may be efficient from programmer POV
 recursion may not be efficient from computer POV
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INDUCTIVE REASONING
 How do we know that our 
recursive code will work?

 mult_iter terminates 
because b is initially positive, 
and decreases by 1 each time 
around loop; thus must 
eventually become less than 1

 mult called with b = 1 has no 
recursive call and stops

 mult called with b > 1 makes 
a recursive call with a smaller 
version of b; must eventually 
reach call with b = 1
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def mult_iter(a, b):

result = 0

while b > 0:

result += a

b -= 1

return result

def mult(a, b):

if b == 1:

return a

else:

return a + mult(a, b-1)



MATHEMATICAL INDUCTION
 To prove a statement indexed on integers is true for all 
values of n:
• Prove it is true when n is smallest value (e.g. n = 0 or n = 1)

• Then prove that if it is true for an arbitrary value of n, one 
can show that it must be true for n+1
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EXAMPLE OF INDUCTION
 0 + 1 + 2 + 3 + … + n = (n(n+1))/2

 Proof
• If n = 0, then LHS is 0 and RHS is 0*1/2 = 0, so true

• Assume true for some k, then need to show that
◦ 0 + 1 + 2 + … + k + (k+1) = ((k+1)(k+2))/2

◦ LHS is k(k+1)/2 + (k+1) by assumption that property holds for 
problem of size k

◦ This becomes, by algebra, ((k+1)(k+2))/2

• Hence expression holds for all n >= 0
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RELEVANCE TO CODE?
 Same logic applies

def mult(a, b):

if b == 1:

return a

else:

return a + mult(a, b-1)

 Base case, we can show that mult must return correct answer

 For recursive case, we can assume that mult correctly returns an 
answer for problems of size smaller than b, then by the addition step, it 
must also return a correct answer for problem of size b

 Thus by induction, code correctly returns answer
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TOWERS OF HANOI
 The story:
• 3 tall spikes

• Stack of 64 different sized discs – start on one spike

• Need to move stack to second spike (at which point 
universe ends)

• Can only move one disc at a time, and a larger disc can 
never cover up a small disc
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By André Karwath aka Aka (Own work) [CC BY-SA 2.5 (http://creativecommons.org/licenses/by-sa/2.5)], via Wikimedia 
Commons



TOWERS OF HANOI
 Having seen a set of examples of different sized stacks, 
how would you write a program to print out the right 
set of moves?

 Think recursively!
• Solve a smaller problem

• Solve a basic problem

• Solve a smaller problem
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def printMove(fr, to):

print('move from ' + str(fr) + ' to ' + str(to))

def Towers(n, fr, to, spare):

if n == 1:

printMove(fr, to)

else:

Towers(n-1, fr, spare, to)

Towers(1, fr, to, spare)

Towers(n-1, spare, to, fr)
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RECURSION WITH MULTIPLE 
BASE CASES
 Fibonacci numbers
• Leonardo of Pisa (aka Fibonacci) modeled the following 

challenge
◦ Newborn pair of rabbits (one female, one male) are put in a pen

◦ Rabbits mate at age of one month

◦ Rabbits have a one month gestation period

◦ Assume rabbits never die, that female always produces one new 
pair (one male, one female) every month from its second month 
on.

◦ How many female rabbits are there at the end of one year?

February 22, 2016 6.0001 LECTURE 6 57



Demo courtesy of Prof. Denny Freeman and Adam Hartz



Demo courtesy of Prof. Denny Freeman and Adam Hartz



Demo courtesy of Prof. Denny Freeman and Adam Hartz



Demo courtesy of Prof. Denny Freeman and Adam Hartz



Demo courtesy of Prof. Denny Freeman and Adam Hartz



Demo courtesy of Prof. Denny Freeman and Adam Hartz



Demo courtesy of Prof. Denny Freeman and Adam Hartz
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FIBONACCI
After one month (call it 0) – 1 female

After second month – still 1 female (now 
pregnant)

After third month – two females, one pregnant, 
one not

In general, females(n) = females(n-1) + 
females(n-2)
◦ Every female alive at month n-2 will produce one 

female in month n;

◦ These can be added those alive in month n-1 to 
get total alive in month n

Month Females

0 1

1 1

2 2

3 3

4 5

5 8

6 13
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FIBONACCI
 Base cases:
• Females(0) = 1

• Females(1) = 1

 Recursive case
• Females(n) = Females(n-1) + Females(n-2)
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def fib(x):

"""assumes x an int >= 0

returns Fibonacci of x""”

if x == 0 or x == 1:

return 1

else:

return fib(x-1) + fib(x-2)
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RECURSION ON NON-
NUMERICS
 how to check if a string of characters is a palindrome, i.e., 
reads the same forwards and backwards
• “Able was I, ere I saw Elba” – attributed to Napoleon

• “Are we not drawn onward, we few, drawn onward to new era?” –
attributed to Anne Michaels
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By Beinecke Library (Flickr: [General Napolean
Bonaparte]) [CC BY-SA 2.0 
(http://creativecommons.org/licenses/by-sa/2.0)], 
via Wikimedia Commons

By Larth_Rasnal (Own work) [GFDL 
(http://www.gnu.org/copyleft/fdl.html) or CC BY 3.0 
(http://creativecommons.org/licenses/by/3.0)], via 
Wikimedia Commons



SOLVING RECURSIVELY?
 First, convert the string to just characters, by stripping 
out punctuation, and converting upper case to lower 
case

 Then
• Base case: a string of length 0 or 1 is a palindrome

• Recursive case:
◦ If first character matches last character, then is a palindrome if 

middle section is a palindrome
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EXAMPLE
‘Able was I, ere I saw Elba’  ‘ablewasiereisawleba’

isPalindrome(‘ablewasiereisawleba’) 
is same as 
• ‘a’ == ‘a’ and 
isPalindrome(‘blewasiereisawleb’)
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def isPalindrome(s):

def toChars(s):
s = s.lower()
ans = ''
for c in s:

if c in 'abcdefghijklmnopqrstuvwxyz':
ans = ans + c

return ans

def isPal(s):
if len(s) <= 1:

return True
else:

return s[0] == s[-1] and isPal(s[1:-1])

return isPal(toChars(s))



DIVIDE AND CONQUER
 an example of a “divide and conquer” algorithm

 solve a hard problem by breaking it into a set of sub-
problems such that:
• sub-problems are easier to solve than the original

• solutions of the sub-problems can be combined to solve 
the original
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MODULES AND FILES
 have assumed that all our code is stored in one file

 cumbersome for large collections of code, or for code 
that should be used by many different other pieces of 
programming

 a module is a .py file containing a collection Python 
definitions and statements
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EXAMPLE MODULE
 the file circle.py contains

pi = 3.14159

def area(radius):

return pi*(radius**2)

def circumference(radius):

return 2*pi*radius


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EXAMPLE MODULE
 then we can import and use this module:

import circle

pi = 3

print(pi)

print(circle.pi)

print(circle.area(3))

print(circle.circumference(3))

 results in the following being printed:

3

3.14159

28.27431

18.849539999999998
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OTHER IMPORTING
 if we don’t want to refer to functions and variables by their 
module, and the names don’t collide with other bindings, 
then we can use:

from circle import *

print(pi)

print(area(3))

 this has the effect of creating bindings within the current 
scope for all objects defined within circle

 statements within a module are executed only the first 
time a module is imported
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FILES
 need a way to save our work for later use

 every operating system has its own way of handling 
files; Python provides an operating-system 
independent means to access files, using a file handle

nameHandle = open(‘kids’, ‘w’)

 creates a file named kids and returns file handle 
which we can name and thus reference.  The w
indicates that the file is to opened for writing into.
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FILES: example
nameHandle = open(‘kids’, ‘w’)

for i in range(2):

name = input(‘Enter name: ‘)

nameHandle.write(name + ‘\’)

nameHandle.close()
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FILES: example
nameHandle = open(‘kids’, ‘r’)

for line in nameHandle:

print(line)

nameHandle.close()
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