DECOMPOSITION,
ABSTRACTION,
FUNCTIONS

HOW DO WE WRITE CODE?

= so far...
* covered language mechanisms
* know how to write different files for each computation
* each file is some piece of code
* each code is a sequence of instructions

= problems with this approach
 easy for small-scale problems
* messy for larger problems
* hard to keep track of details

* how do you know the right info is supplied to the right
part of code

February 22, 2016 6.0001 LECTURE 6

GOOD PROGRAMMING

= more code not necessarily a good thing

" measure good programmers by the amount of
functionality

= introduce functions

= mechanism to achieve decomposition and abstraction

February 22, 2016 6.0001 LECTURE 6

EXAMPLE -- PROJECTOR

= 3 projector is a black box

= don’t know how it works

= know the interface: input/output

http://www.myprojectorlamps.com/blog/wp-content/

uploads/Dell-1610HD-Projector.jpg

= connect any electronics to it that can communicate
with that input

= black box somehow converts image from input source
to a wall, magnifying it

= ABSTRACTION IDEA: do not need to know how
projector works to use it

February 22, 2016 6.0001 LECTURE 6

EXAMPLE -- PROJECTOR

" projecting large image for
Olympics decomposed into
separate tasks for separate
projectors

= each projector takes input
and produces separate output 8

= all projectors work together
to produce larger image

By Adenosine (Own work) [CC BY-SA 3.0

- DECOMPOSITION IDEA (http://creativecommons.org/licenses/by-sa/3.0) or
different devices work GFDL (http://www.gnu.org/copyleft/fdl.html)], via
. Wikimedia Commons
together to achieve an end
goal

February 22, 2016 6.0001 LECTURE 6

APPLY THESE IDEAS TO
PROGRAMMING

= DECOMPOSITION
* Break problem into different, self-contained, pieces

= ABSTRACTION

 Suppress details of method to compute something from
use of that computation

CREATE STRUCTURE with
DECOMPOSITION

" in example, separate devices

= in programming, divide code into modules
* are self-contained

* used to break up code

* intended to be reusable
* keep code organized

* keep code coherent

= this lecture, achieve decomposition with functions

" in a few weeks, achieve decomposition with classes

SUPPRESS DETAILS with
ABSTRACTION

= in example, no need to know how to build a projector

" in programming, think of a piece of code as a black box
e cannot see details

* do not need to see details
 do not want to see details
* hide tedious coding details

= achieve abstraction with function specifications or
docstrings

DECOMPOSITION &
ABSTRACTION

= powerful together

= code can be used many times but only has to be
debugged once!

February 22, 2016 6.0001 LECTURE 6

FUNCTIONS

= write reusable piece/chunks of code, called functions

= functions are not run in a program until they are
“called” or “invoked” in a program

= function characteristics:
* has a name
* has parameters (0O or more)
* has a docstring (optional but recommended)
* has a body

February 22, 2016 6.0001 LECTURE 6

HOW -

'O WRITE and

CALL/INVOKE A FUNCTION

S
\.e(S
of e @ ot
(o) e
e @ 2 (@
!
of
def||is even|(|1]):
mwiww . O(\)
. ;"\(,’6‘\
Input: i, a positive int Exﬁﬁzxaw%
Returns True if i1 is even, otherwise False 600
C\\\ print ("hi”)
\00 \\ ",\(\e
return 1%2 == o A
e \‘O\) e o
]
is even (3) \(\" \)5'\(\% ((\e‘e
— \at® C:

February 22,2016

6.0001 LECTURE 6

IN THE FUNCTION BODY

def i1s even(1):
Input: i, a positive int

Returns True if 1 is even, otherwise False

e

o SO((\
WO,

print ("hi”) eﬁa§§eg9o

return"i%2 == 0 et
A\

(ﬁd \60\9 (é‘(
N e 00
{2 *Q(e o)
e\?

February 22, 2016 6.0001 LECTURE 6

February 22, 2016 6.0001 LECTURE 6

VARIABLE SCOPE

" formal parameter gets bound to the value of
actual parameter when function is called

= new scope/frame/environment created when enter a function

" scope is mapping of names to objects

?b <
(® Xe
%O @ < Global scope
def £(xh: ©
X =xXx + 1 f Sl
code
print('in f(x): x ="', X)
return x
x = 3 AR
XV X<
2C ,a((\e

z = |f(x| Q’é‘ call to f, before
— body evaluated

February 22, 2016 6.0001 LECTURE 6

VARIABLE SCOPE

= formal parameter gets bound to the value of
actual parameter when function is called

" new scope/frame/environment created when enter a function

= scope is mapping of names to objects

Global scope

def £(x):
f Some

code

X
|
X
+
—

February 22, 2016 6.0001 LECTURE 6

VARIABLE SCOPE

" formal parameter gets bound to the value of
actual parameter when function is called

= new scope/frame/environment created when enter a function

" scope is mapping of names to objects

Global scope

def £(x) :
f Some

code

print('in f(x): x , X)

return x

February 22, 2016 6.0001 LECTURE 6

VARIABLE SCOPE

" formal parameter gets bound to the value of
actual parameter when function is called

= new scope/frame/environment created when enter a function

" scope is mapping of names to objects

Global scope

def £(x) :
f Some

code

print('in f(x): x , X)

return x

z = F(x) binding of returned value to
variable z

February 22, 2016 6.0001 LECTURE 6

ONE WARNING IF NO
return STATEMENT

def is even(1):

Input: 1, a positive int

Does not return anything

= Python returns the value None, if no return given

= represents the absence of a value

return VS. print

= return only has meaning | = print can be used outside
inside a function functions

= only one return executed

. : = can execute many print
inside a function yp

statements inside a function

= code inside function but . .
after return statement not| " code inside function can be

executed executed after a print

_ statement
= has a value associated

with it, given to function | = has a value associated with
caller it, outputted to the console

February 22, 2016 6.0001 LECTURE 6

FUNCTIONS AS ARGUMENTS

= arguments can take on any type, even functions

def func af():
print ('iInside func a’)
def func b(y):

print ('inside func b’) ‘wéﬂs ao°
return y 09&6 e éafﬁ
def func c(z): A Q&&Q (3W§0
print ('inside func c’) ‘&@f” S&@ g@éﬁ‘
return z () d&& ,“ﬁe ogﬁﬁ
print/(func a()) 6&wﬂbngﬁo

print (5 + [func b (2)) &&@/
print/(func c(func a))

February 22, 2016 6.0001 LECTURE 6

SCOPE EXAMPLE

= inside a function, can access a variable defined outside

" inside a function, cannot modify a variable defined

outside

def f(y):

def g(y):

« print
O S
$i§¥$' print|(x
0

X

X = 5
g (x)
print (

Xgﬁ

. 6@ e
$'\06\ ScoQ
«°
SSRGS

(¢

X

def h(y):
X = x + 1
X =5 @
h (x) \@«o\“&
print(xyv§@,@@9
(O(' SS\%
X e®
O e
d§b0§b
Q@Oéée
N

February 22,2016

6.0001 LECTURE 6

SCOPE EXAMPLE

= inside a function, can access a variable defined outside

" inside a function, cannot modify a variable defined

outside
def f(y): def g (y): def h(y):
x =1 print x Xx = x + 1
x += 1
print x X =5
x =5 h(2)
X =5 g (2) print x
f(2) print x

print x @ a0
o 2 e
\\\ “‘¢v09¢ﬁ

February 22, 2016 6.0001 LECTURE 6

HARDER SCOPE EXAMPLE

IMPORTANT

and
TRICKY!

Python Tutor is your best friend to
help sort this out!

http://www.pythontutor.com/

http://www.pythontutor.com/

SCOPE DETAILS

def g(x):

def h{():

h ()

return X

February 22,2016

~

Global scope

Some
code

6.0001 LECTURE 6

SCOPE DETAILS

def g(x): Global scope

g scope

x = 'abc' Some
code

h ()

return X

February 22, 2016 6.0001 LECTURE 6

SCOPE DETAILS

def g(x): Global scope g scope
def h{():
. = Some
code
X = X +

h ()

return X

February 22, 2016 6.0001 LECTURE 6

SCOPE DETAILS

def g(x): Global scope

g scope

Some
code

print('in g(x): x =', X)

a0 G

return X

February 22, 2016 6.0001 LECTURE 6

SCOPE DETAILS

def g(x): Global scope g scope
def h{():
% — taper Some
code
X =x + 1
print('in g(x): x =', X)
h ()

return x -

February 22, 2016 6.0001 LECTURE 6

SCOPE DETAILS

def g(x): Global scope
def h{():
% — 'ape Some
code
X =x + 1
print ('in g(x): x =", Xx)
h()

return X

February 22, 2016 6.0001 LECTURE 6

February 22, 2016 6.0001 LECTURE 6

CEYWORD ARGUMENTS AND
DEFAULT VALUES

= Simple function definition, if last argument is TRUE,
then print lastName, firstName; else firstName,
lastName

def printName (firstName, lastName, reverse):
1f reverse:
print (lastName + ', ' + firstName)

else:

print (firstName, lastName)

CEYWORD ARGUMENTS AND
DEFAULT VALUES

= Each of these invocations is equivalent

printName (‘Eric’, ‘Grimson’, False)

printName (‘Eric’, ‘Grimson’, reverse = False)
printName (‘Eric’, lastName = ‘Grimson’, reverse = False)
printName (lastName = ‘Grimson’, firstName = ‘Eric’,

reverse = False)

CEYWORD ARGUMENTS AND
DEFAULT VALUES

= Can specify that some arguments have default values, so if no
value supplied, just use that value

def printName (firstName, lastName, reverse = False):
1f reverse:
print (lastName + ', ' + firstName)
else:

print (firstName, lastName)

printName (‘Eric’, ‘Grimson’)

rintName (‘Eric’ ‘Grimson’, True)
p ’ ’

February 22, 2016 6.0001 LECTURE 6

February 22, 2016 6.0001 LECTURE 6

SPECIFICATIONS

= 3 contract between the implementer of a function and
the clients who will use it

* Assumptions: conditions that must be met by clients of
the function; typically constraints on values of parameters

* Guarantees: conditions that must be met by function,
providing it has been called in manner consistent with
assumptions

February 22, 2016 6.0001 LECTURE 6

def is even(1):
Input: 1, a positive 1int

Returns True if i is even, otherwise False

print "hi"
return 1%2 == 0

1s even (3)

February 22, 2016 6.0001 LECTURE 6

February 22, 2016 6.0001 LECTURE 6

WHAT IS RECURSION

= 3 way to design solutions to problems by divide-and-
conquer or decrease-and-conquer

= 3 programming technique where a function calls itself

= in programming, goal is to NOT have infinite recursion
* must have 1 or more base cases that are easy to solve

* must solve the same problem on some other input with
the goal of simplifying the larger problem input

February 22, 2016 6.0001 LECTURE 6

ITERATIVE ALGORITHMS SO FAR

" [ooping constructs (while and for loops) lead to
iterative algorithms

= can capture computation in a set of state variables
that update on each iteration through loop

MULTIPLICATION —
TERATIVE SOLUTION

" “multiply a * b” is equivalent to “add a to itself b times”

" capture state by
* an iteration number (1) startsat b

i €« 1i-1 andstop whenO
* acurrent value of computation (result)
result € result + a

def mult iter(a, b): o
result = 0) 00 < o A
while b > O: A (\wa\\)iw ,gi\o“\‘a

result += a C‘)((io("‘(\% c (&
b —=1 ” ((e(\‘\\a\\)
o

return result

February 22, 2016 6.0001 LECTURE 6

MULTIPLICATION —
RECURSIVE SOLUTION

" recursive step atb=atatatat.ta

* think how to reduce - S
problem to a =ata+t+atat.+a
simpler/smaller > v jx’i‘“\es
version of same o
problem = a+ a* (b-1)

" base case def mult (a, b): .

* keep reducing I — basec,as B
problem until reach a 6&6\“
simple case that can return a (5’@9
be solved directly clse:

* whenb=1,a*b=a return a + mult(a, b-1)

February 22, 2016 6.0001 LECTURE 6 42

FACTORIAL

n! = n*(n-1)*(n-2)*(n-3)* ... * 1

= what n do we know the factorial of?
n=1 - if n == 1: 2

0o

return 1

= how to reduce problem? Rewrite in terms of
something simpler to reach base case
n*(n-1)! > else:

return n*factorial (n-1)

February 22, 2016 6.0001 LECTURE 6

RECURSIVE
FUNCTION
SCOPE
EXAMPLE

Global scope fact scope
(call w/ n=4)

fact Some

February 22,2016

def fact(n):
1f n == 1:
return 1
else:
return n*fact(n-1)

print (fact (4))

fact scope fact scope fact scope
(call w/ n=3) (call w/ n=2) (call w/ n=1)

6.0001 LECTURE 6

SOME OBSERVATIONS

Ys,:
09/77//76}03
04 . Q
6/@Q‘@&é(/ &6/)7
K S, Q‘é@y@ %y,
: : : So5. " 9, 9%
= each recursive call to a function creates its Gfef@"@%/@
own scope/environment . *“C%@jfe,) ’
= bindings of variables in a scope is not
changed by recursive call Y,

= flow of control passes back to previous
scope once function call returns value

February 22, 2016 6.0001 LECTURE 6

ITERATION vs. RECURSION

def factorial iter(n): def factorial (n):
prod = 1 1f n ==
for 1 in range(l,n+1): return 1
prod *= 1 else:
return prod return n*factorial (n-1)

" recursion may be simpler, more intuitive
" recursion may be efficient from programmer POV
" recursion may not be efficient from computer POV

February 22, 2016 6.0001 LECTURE 6

February 22, 2016 6.0001 LECTURE 6

INDUCTIVE REASONING

= How do we know that our def mult_iter(a, b):
recursive code will work? result = 0
"mult iter terminates while b > 0:
because b is initially positive, result += a
and decreases by 1 each time b oo 1
around IooB; thus must

eventually become less than 1 return result
*mult called with b =1 has no

recursive call and stops def mult(a, b):
"mult called with b > 1 makes it b ==

a recursive call with a smaller
version of b; must eventually
reach call withb=1 else:

return a

return a + mult(a, b-1)

February 22, 2016 6.0001 LECTURE 6

MATHEMATICAL INDUCTION

" To prove a statement indexed on integers is true for all
values of n:

* Prove it is true when n is smallest value (e.g. n=0o0or n = 1)

* Then prove that if it is true for an arbitrary value of n, one
can show that it must be true for n+1

EXAMPLE OF INDUCTION

"0+1+2+3+..+n=(n(n+1))/2

= Proof
*If n=0, then LHS is 0 and RHS is 0*1/2 = 0, so true

* Assume true for some k, then need to show that
c0+1+2+..+k+(k+1)=((k+1)(k+2))/2

o LHS is k(k+1)/2 + (k+1) by assumption that property holds for
problem of size k

> This becomes, by algebra, ((k+1)(k+2))/2
* Hence expression holds for alln >=0

February 22, 2016 6.0001 LECTURE 6

RELEVANCE TO CODE?

= Same logic applies

def mult(a, Db):

1f == 1:
return a
else:
return a + mult(a, b-1)
= Base case, we can show that mult must return correct answer

= For recursive case, we can assume that mult correctly returns an
answer for problems of size smaller than b, then by the addition step, it
must also return a correct answer for problem of size b

= Thus by induction, code correctly returns answer

February 22, 2016 6.0001 LECTURE 6

February 22, 2016 6.0001 LECTURE 6

TOWERS OF HANOI

= The story:
* 3 tall spikes
* Stack of 64 different sized discs — start on one spike

* Need to move stack to second spike (at which point
universe ends)

* Can only move one disc at a time, and a larger disc can
never cover up a small disc

=

By André Karwath aka Aka (Own work) [CC BY-SA 2.5 (http://creativecommons.org/licenses/by-sa/2.5)], via Wikimedia
Commons

February 22, 2016 6.0001 LECTURE 6

TOWERS OF HANOI

= Having seen a set of examples of different sized stacks,
how would you write a program to print out the right
set of moves?

=" Think recursively!
* Solve a smaller problem
* Solve a basic problem
* Solve a smaller problem

February 22, 2016 6.0001 LECTURE 6

def printMove (fr, to):

print ('move from ' + str(fr) +

def Towers(n, fr, to, spare):
1f n == 1:
printMove (fr, to)
else:
Towers (n-1, fr, spare, to)
Towers (1, fr, to, spare)

Towers (n-1, spare, to, fr)

February 22,2016 6.0001 LECTURE 6

!

TO

!

+ str(to))

February 22, 2016 6.0001 LECTURE 6

RECURSION WITH MULTIPLE
BASE CASES

= Fibonacci numbers

* Leonardo of Pisa (aka Fibonacci) modeled the following
challenge

Newborn pair of rabbits (one female, one male) are put in a pen

(¢]

(¢]

Rabbits mate at age of one month

(¢]

Rabbits have a one month gestation period

(¢]

Assume rabbits never die, that female always produces one new
pair (one male, one female) every month from its second month
on.

(¢]

How many female rabbits are there at the end of one year?

February 22, 2016 6.0001 LECTURE 6

g

Demo courtesy of Prof. Denny Freeman and Adam Hartz

A T

Demo courtesy of Prof. Denny Freeman and Adam Hartz

at &

At

Demo courtesy of Prof. Denny Freeman and Adam Hartz

at i

AT T

i

Demo courtesy of Prof. Denny Freeman and Adam Hartz

AT 5

i

at &

Demo courtesy of Prof. Denny Freeman and Adam Hartz

ar
e
ar

A T

&

%&\

At

AT T

A T

%é\

at &

Demo courtesy of Prof. Denny Freeman and Adam Hartz

AT 5

D urtesy of Prof. Denny Freeman and Adam Hartz

a 2 ETHP ¥ N
(O

£
ﬁ% arta &l &%ﬁ%

dh, df 2 d

at el &l &t thetar
2%% é%i% 2%% 2%%%
?%% 2%% 2%%% é.%%&
é%i@%)%% et S

Demo courtesy of Prof. Denny Freeman and Adam Hartz

T

g

s T

fvE
AL B

S

Eatat

aiin

e R
(ﬁ

y

ailn

a4

al

e X

%

oy ??/g

emo courtesy of Prof. Denny Freeman and Adam Hartz

T3

i R s R

2
o
%%/L

in) Jatf in, Jal in

C3 IS

ar %

ar %

At Uz i 4

FIBONACCI

After one month (call it 0) — 1 female

After second month — still 1 female (now
pregnant)

After third month — two females, one pregnant,
one not

In general, females(n) = females(n-1) +
females(n-2)
o Every female alive at month n-2 will produce one
female in month n;

o These can be added those alive in month n-1 to
get total alive in month n

February 22,2016 6.0001 LECTURE 6

Month Females
0 1

1 1

2 2

3 3

4 5

5 8

6 13

68

FIBONACCI

= Base cases:
* Females(0) =1

* Females(1) =1

= Recursive case
* Females(n) = Females(n-1) + Females(n-2)

def fib (x) :
""U"gssumes x an int >= 0
returns Fibonacci of x""”
if x == 0 or x == 1:
return 1

else:

return fib(x-1) + fib(x-2)

February 22, 2016 6.0001 LECTURE 6 70

February 22, 2016 6.0001 LECTURE 6

RECURSION ON NON-
NUMERICS

" how to check if a string of characters is a palindrome, i.e.,
reads the same forwards and backwards
* “Able was |, ere | saw Elba” — attributed to Napoleon

* “Are we not drawn onward, we few, drawn onward to new era?” —
attributed to Anne Michaels

—ende

By Beinecke Library (Flickr: [General Napolean By Larth_asnal (Own work) [GFDL
Bonaparte]) [CC BY-SA 2.0 (http://www.gnu.org/copyleft/fdl.html) or CC BY 3.0

(http://creativecommons.org/licenses/by-sa/2.0)], (http://creativecommons.org/licenses/by/3.0)], via

via Wikimedia Commons Wikimedia Commons
6.0001 LECTURE 6

February 22,2016

SOLVING RECURSIVELY?

= First, convert the string to just characters, by stripping
out punctuation, and converting upper case to lower
case

=" Then
* Base case: a string of length 0 or 1 is a palindrome

e Recursive case:

o |f first character matches last character, then is a palindrome if
middle section is a palindrome

February 22, 2016 6.0001 LECTURE 6

EXAMPLE

=‘Able was |, ere | saw Elba’ = ‘ablewasiereisawleba’

"isPalindrome (‘ablewasiereisawleba’)

IS same as

e ‘a’ == ‘a’ and
1sPalindrome (‘blewaslereisawleb’)

February 22, 2016 6.0001 LECTURE 6

def isPalindrome (s) :

def toChars(s) :
s = s.lower ()
ans = "'
for ¢ in s:
1f ¢ in 'abcdefghijklmnopgrstuvwxyz':
ans = ans + cC
return ans

def isPal(s) :
if len(s) <= 1:
return True
else:
return s[0] == s[-1] and 1sPal(s[1l:-117)

return i1isPal (toChars(s))

February 22, 2016 6.0001 LECTURE 6 75

DIVIDE AND CONQUER

= an example of a “divide and conquer” algorithm

= solve a hard problem by breaking it into a set of sub-
problems such that:

* sub-problems are easier to solve than the original

* solutions of the sub-problems can be combined to solve
the original

February 22, 2016 6.0001 LECTURE 6

February 22, 2016 6.0001 LECTURE 6

MODULES AND FILES

= have assumed that all our code is stored in one file

= cumbersome for large collections of code, or for code
that should be used by many different other pieces of
programming

" amoduleisa .py file containing a collection Python
definitions and statements

February 22, 2016 6.0001 LECTURE 6

EXAMPLE MODULE

" the file circle.py contains
pi = 3.14159
def area (radius) :
return pil* (radius**2)

def circumference (radius) :

return 2*pi*radius

EXAMPLE MODULE

= then we can import and use this module:
import circle

pi = 3

print (pi)

print (circle.pi)

print (circle.area(3))

print (circle.circumference (3))

= results in the following being printed:

3
3.14159
28.27431

18.849539999999998

February 22, 2016 6.0001 LECTURE 6

OTHER IMPORTING

" if we don’t want to refer to functions and variables by their
module, and the names don’t collide with other bindings,
then we can use:

from circle import *
print (p1)
print (area(3))

= this has the effect of creating bindings within the current
scope for all objects defined withincircle

= statements within a module are executed only the first
time a module is imported

February 22, 2016 6.0001 LECTURE 6

FILES

" need a way to save our work for later use

= every operating system has its own way of handling
files; Python provides an operating-system
independent means to access files, using a file handle

nameHandle = open(‘kids’, ‘w’)

= creates a file named kids and returns file handle
which we can name and thus reference. The w
indicates that the file is to opened for writing into.

February 22, 2016 6.0001 LECTURE 6

FILES: example

nameHandle = open(‘kids’, ‘w’)

for 1 1n range(2):
name = 1nput (‘Enter name: ‘)
nameHandle.write (name + ‘\’)

nameHandle.close ()

February 22, 2016 6.0001 LECTURE 6

FILES: example

nameHandle = open(‘kids’, ‘r’)

for line 1n nameHandle:
print (1ine)

nameHandle.close ()

February 22, 2016 6.0001 LECTURE 6

