
DECOMPOSITION,
ABSTRACTION,
FUNCTIONS

6.0001 LECTURE 6 1February 22, 2016

HOW DO WE WRITE CODE?
 so far…
• covered language mechanisms

• know how to write different files for each computation

• each file is some piece of code

• each code is a sequence of instructions

 problems with this approach
• easy for small-scale problems

• messy for larger problems

• hard to keep track of details

• how do you know the right info is supplied to the right
part of code

6.0001 LECTURE 6 2February 22, 2016

GOOD PROGRAMMING
more code not necessarily a good thing

measure good programmers by the amount of
functionality

 introduce functions

mechanism to achieve decomposition and abstraction

6.0001 LECTURE 6 3February 22, 2016

EXAMPLE -- PROJECTOR
 a projector is a black box

 don’t know how it works

 know the interface: input/output

 connect any electronics to it that can communicate
with that input

 black box somehow converts image from input source
to a wall, magnifying it

 ABSTRACTION IDEA: do not need to know how
projector works to use it

6.0001 LECTURE 6 4February 22, 2016

http://www.myprojectorlamps.com/blog/wp-content/
uploads/Dell-1610HD-Projector.jpg

EXAMPLE -- PROJECTOR
 projecting large image for
Olympics decomposed into
separate tasks for separate
projectors

 each projector takes input
and produces separate output

 all projectors work together
to produce larger image

 DECOMPOSITION IDEA:
different devices work
together to achieve an end
goal

6.0001 LECTURE 6 5February 22, 2016

By Adenosine (Own work) [CC BY-SA 3.0
(http://creativecommons.org/licenses/by-sa/3.0) or
GFDL (http://www.gnu.org/copyleft/fdl.html)], via
Wikimedia Commons

APPLY THESE IDEAS TO
PROGRAMMING
 DECOMPOSITION
• Break problem into different, self-contained, pieces

 ABSTRACTION
• Suppress details of method to compute something from

use of that computation

6.0001 LECTURE 6 6February 22, 2016

CREATE STRUCTURE with
DECOMPOSITION

6.0001 LECTURE 6 7

 in example, separate devices

 in programming, divide code into modules
• are self-contained

• used to break up code

• intended to be reusable

• keep code organized

• keep code coherent

 this lecture, achieve decomposition with functions

 in a few weeks, achieve decomposition with classes

February 22, 2016

SUPPRESS DETAILS with
ABSTRACTION

6.0001 LECTURE 6 8

 in example, no need to know how to build a projector

 in programming, think of a piece of code as a black box
• cannot see details

• do not need to see details

• do not want to see details

• hide tedious coding details

 achieve abstraction with function specifications or
docstrings

February 22, 2016

DECOMPOSITION &
ABSTRACTION
 powerful together

 code can be used many times but only has to be
debugged once!

6.0001 LECTURE 6 9February 22, 2016

February 22, 2016 6.0001 LECTURE 6 10

FUNCTIONS
 write reusable piece/chunks of code, called functions

 functions are not run in a program until they are
“called” or “invoked” in a program

 function characteristics:
• has a name

• has parameters (0 or more)

• has a docstring (optional but recommended)

• has a body

6.0001 LECTURE 6 11February 22, 2016

def is_even(i):

"""

Input: i, a positive int

Returns True if i is even, otherwise False

"""

print("hi”)

return i%2 == 0

is_even(3)

HOW TO WRITE and
CALL/INVOKE A FUNCTION

6.0001 LECTURE 6 12February 22, 2016

def is_even(i):

"""

Input: i, a positive int

Returns True if i is even, otherwise False

"""

print("hi”)

return i%2 == 0

IN THE FUNCTION BODY

6.0001 LECTURE 6 13February 22, 2016

February 22, 2016 6.0001 LECTURE 6 14

VARIABLE SCOPE
 formal parameter gets bound to the value of
actual parameter when function is called

 new scope/frame/environment created when enter a function

 scope is mapping of names to objects

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

6.0001 LECTURE 6 15

Global scope

f

x

z

Some
code

f scope

x 3

3

February 22, 2016

call to f, before
body evaluated

 formal parameter gets bound to the value of
actual parameter when function is called

 new scope/frame/environment created when enter a function

 scope is mapping of names to objects

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

VARIABLE SCOPE

6.0001 LECTURE 6 16

Global scope

f

x

z

Some
code

f scope

x 4

3

February 22, 2016

VARIABLE SCOPE
 formal parameter gets bound to the value of
actual parameter when function is called

 new scope/frame/environment created when enter a function

 scope is mapping of names to objects

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

6.0001 LECTURE 6 17

Global scope

f

x

z

Some
code

3

f scope

x 4

February 22, 2016

VARIABLE SCOPE
 formal parameter gets bound to the value of
actual parameter when function is called

 new scope/frame/environment created when enter a function

 scope is mapping of names to objects

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

6.0001 LECTURE 6 18

Global scope

f

x

z

Some
code

3

4

February 22, 2016

binding of returned value to
variable z

ONE WARNING IF NO
return STATEMENT
def is_even(i):

"""

Input: i, a positive int

Does not return anything

"""

i%2 == 0

 Python returns the value None, if no return given

 represents the absence of a value

6.0001 LECTURE 6 19February 22, 2016

return vs. print
 return only has meaning
inside a function

 only one return executed
inside a function

 code inside function but
after return statement not
executed

 has a value associated
with it, given to function
caller

 print can be used outside
functions

 can execute many print
statements inside a function

 code inside function can be
executed after a print
statement

 has a value associated with
it, outputted to the console

6.0001 LECTURE 6 20February 22, 2016

FUNCTIONS AS ARGUMENTS
 arguments can take on any type, even functions

def func_a():

print('inside func_a’)

def func_b(y):

print('inside func_b’)

return y

def func_c(z):

print('inside func_c’)

return z()

print(func_a())

print(5 + func_b(2))

print(func_c(func_a))

6.0001 LECTURE 6 21February 22, 2016

 inside a function, can access a variable defined outside

 inside a function, cannot modify a variable defined
outside

SCOPE EXAMPLE

6.0001 LECTURE 6 22

def g(y):

print(x)

print(x + 1)

x = 5

g(x)

print(x)

def h(y):

x = x + 1

x = 5

h(x)

print(x)

def f(y):

x = 1

x += 1

print(x)

x = 5

f(x)

print(x)

February 22, 2016

 inside a function, can access a variable defined outside

 inside a function, cannot modify a variable defined
outside

SCOPE EXAMPLE

6.0001 LECTURE 6 23

def g(y):

print x

x = 5

g(2)

print x

def h(y):

x = x + 1

x = 5

h(2)

print x

def f(y):

x = 1

x += 1

print x

x = 5

f(2)

print x

February 22, 2016

HARDER SCOPE EXAMPLE

Python Tutor is your best friend to
help sort this out!

http://www.pythontutor.com/

IMPORTANT
and

TRICKY!

6.0001 LECTURE 6 24February 22, 2016

http://www.pythontutor.com/

def g(x):

def h():

x = 'abc'

x = x + 1

print('in g(x): x =', x)

h()

return x

x = 3

z = g(x)

SCOPE DETAILS
Global scope

g

x

z

Some
code

3

6.0001 LECTURE 6 25February 22, 2016

SCOPE DETAILS
g scope

x

h Some
code

3

6.0001 LECTURE 6 26

def g(x):

def h():

x = 'abc'

x = x + 1

print('in g(x): x =', x)

h()

return x

x = 3

z = g(x)

Global scope

g

x

z

Some
code

3

February 22, 2016

SCOPE DETAILS
g scope

x

h Some
code

34

6.0001 LECTURE 6 27

def g(x):

def h():

x = 'abc'

x = x + 1

print('in g(x): x =', x)

h()

return x

x = 3

z = g(x)

Global scope

g

x

z

Some
code

3

February 22, 2016

SCOPE DETAILS
def g(x):

def h():

x = 'abc'

x = x + 1

print('in g(x): x =', x)

h()

return x

x = 3

z = g(x)

Global scope

g

x

z

Some
code

3

g scope

x

h Some
code

3

h scope

x
“abc”4

6.0001 LECTURE 6 28February 22, 2016

SCOPE DETAILS
g scope

x

h Some
code

None

4

6.0001 LECTURE 6 29

def g(x):

def h():

x = 'abc'

x = x + 1

print('in g(x): x =', x)

h()

return x

x = 3

z = g(x)

Global scope

g

x

z

Some
code

3

February 22, 2016

SCOPE DETAILS

6.0001 LECTURE 6 30

def g(x):

def h():

x = 'abc'

x = x + 1

print('in g(x): x =', x)

h()

return x

x = 3

z = g(x)

Global scope

g

x

z

Some
code

3

4

February 22, 2016

6.0001 LECTURE 6 31February 22, 2016

KEYWORD ARGUMENTS AND
DEFAULT VALUES
 Simple function definition, if last argument is TRUE,
then print lastName, firstName; else firstName,
lastName

def printName(firstName, lastName, reverse):

if reverse:

print(lastName + ‘, ‘ + firstName)

else:

print(firstName, lastName)

6.0001 LECTURE 6 32February 22, 2016

KEYWORD ARGUMENTS AND
DEFAULT VALUES

 Each of these invocations is equivalent

printName(‘Eric’, ‘Grimson’, False)

printName(‘Eric’, ‘Grimson’, reverse = False)

printName(‘Eric’, lastName = ‘Grimson’, reverse = False)

printName(lastName = ‘Grimson’, firstName = ‘Eric’,

reverse = False)

6.0001 LECTURE 6 33February 22, 2016

KEYWORD ARGUMENTS AND
DEFAULT VALUES

 Can specify that some arguments have default values, so if no
value supplied, just use that value

def printName(firstName, lastName, reverse = False):

if reverse:

print(lastName + ‘, ‘ + firstName)

else:

print(firstName, lastName)

printName(‘Eric’, ‘Grimson’)

printName(‘Eric’, ‘Grimson’, True)

6.0001 LECTURE 6 34February 22, 2016

6.0001 LECTURE 6 35February 22, 2016

SPECIFICATIONS
 a contract between the implementer of a function and
the clients who will use it
• Assumptions: conditions that must be met by clients of

the function; typically constraints on values of parameters

• Guarantees: conditions that must be met by function,
providing it has been called in manner consistent with
assumptions

6.0001 LECTURE 6 36February 22, 2016

February 22, 2016 6.0001 LECTURE 6 37

def is_even(i):

"""

Input: i, a positive int

Returns True if i is even, otherwise False

"""

print "hi"

return i%2 == 0

is_even(3)

6.0001 LECTURE 6 38February 22, 2016

WHAT IS RECURSION
 a way to design solutions to problems by divide-and-
conquer or decrease-and-conquer

 a programming technique where a function calls itself

 in programming, goal is to NOT have infinite recursion
• must have 1 or more base cases that are easy to solve

• must solve the same problem on some other input with
the goal of simplifying the larger problem input

February 22, 2016 6.0001 LECTURE 6 39

ITERATIVE ALGORITHMS SO FAR
 looping constructs (while and for loops) lead to
iterative algorithms

 can capture computation in a set of state variables
that update on each iteration through loop

February 22, 2016 6.0001 LECTURE 6 40

MULTIPLICATION –
ITERATIVE SOLUTION
 “multiply a * b” is equivalent to “add a to itself b times”

 capture state by
• an iteration number (i) starts at b

i  i-1 and stop when 0
• a current value of computation (result)

result  result + a

def mult_iter(a, b):

result = 0

while b > 0:

result += a

b -= 1

return result

February 22, 2016 6.0001 LECTURE 6 41

a*b = a + a + a + a + … + a

= a + a + a + a + … + a

= a + a * (b-1)

MULTIPLICATION –
RECURSIVE SOLUTION
 recursive step
• think how to reduce

problem to a
simpler/smaller
version of same
problem

 base case
• keep reducing

problem until reach a
simple case that can
be solved directly

• when b = 1, a*b = a

February 22, 2016 6.0001 LECTURE 6 42

def mult(a, b):

if b == 1:

return a

else:

return a + mult(a, b-1)

FACTORIAL
n! = n*(n-1)*(n-2)*(n-3)* … * 1

 what n do we know the factorial of?
n = 1  if n == 1:

return 1

 how to reduce problem? Rewrite in terms of
something simpler to reach base case
n*(n-1)!  else:

return n*factorial(n-1)

February 22, 2016 6.0001 LECTURE 6 43

RECURSIVE
FUNCTION
SCOPE
EXAMPLE

Global scope

fact Some
code

fact scope
(call w/ n=4)

n
4

fact scope
(call w/ n=3)

n
3

fact scope
(call w/ n=2)

n
2

fact scope
(call w/ n=1)

n
1

February 22, 2016 6.0001 LECTURE 6 44

def fact(n):

if n == 1:

return 1

else:

return n*fact(n-1)

print(fact(4))

SOME OBSERVATIONS

 each recursive call to a function creates its
own scope/environment

 bindings of variables in a scope is not
changed by recursive call

 flow of control passes back to previous
scope once function call returns value

February 22, 2016 6.0001 LECTURE 6 45

ITERATION vs. RECURSION
def factorial_iter(n):

prod = 1

for i in range(1,n+1):

prod *= i

return prod

def factorial(n):

if n == 1:

return 1

else:

return n*factorial(n-1)

February 22, 2016 6.0001 LECTURE 6 46

 recursion may be simpler, more intuitive
 recursion may be efficient from programmer POV
 recursion may not be efficient from computer POV

6.0001 LECTURE 6 47February 22, 2016

INDUCTIVE REASONING
 How do we know that our
recursive code will work?

 mult_iter terminates
because b is initially positive,
and decreases by 1 each time
around loop; thus must
eventually become less than 1

 mult called with b = 1 has no
recursive call and stops

 mult called with b > 1 makes
a recursive call with a smaller
version of b; must eventually
reach call with b = 1

February 22, 2016 6.0001 LECTURE 6 48

def mult_iter(a, b):

result = 0

while b > 0:

result += a

b -= 1

return result

def mult(a, b):

if b == 1:

return a

else:

return a + mult(a, b-1)

MATHEMATICAL INDUCTION
 To prove a statement indexed on integers is true for all
values of n:
• Prove it is true when n is smallest value (e.g. n = 0 or n = 1)

• Then prove that if it is true for an arbitrary value of n, one
can show that it must be true for n+1

February 22, 2016 6.0001 LECTURE 6 49

EXAMPLE OF INDUCTION
 0 + 1 + 2 + 3 + … + n = (n(n+1))/2

 Proof
• If n = 0, then LHS is 0 and RHS is 0*1/2 = 0, so true

• Assume true for some k, then need to show that
◦ 0 + 1 + 2 + … + k + (k+1) = ((k+1)(k+2))/2

◦ LHS is k(k+1)/2 + (k+1) by assumption that property holds for
problem of size k

◦ This becomes, by algebra, ((k+1)(k+2))/2

• Hence expression holds for all n >= 0

February 22, 2016 6.0001 LECTURE 6 50

RELEVANCE TO CODE?
 Same logic applies

def mult(a, b):

if b == 1:

return a

else:

return a + mult(a, b-1)

 Base case, we can show that mult must return correct answer

 For recursive case, we can assume that mult correctly returns an
answer for problems of size smaller than b, then by the addition step, it
must also return a correct answer for problem of size b

 Thus by induction, code correctly returns answer
February 22, 2016 6.0001 LECTURE 6 51

6.0001 LECTURE 6 52February 22, 2016

TOWERS OF HANOI
 The story:
• 3 tall spikes

• Stack of 64 different sized discs – start on one spike

• Need to move stack to second spike (at which point
universe ends)

• Can only move one disc at a time, and a larger disc can
never cover up a small disc

February 22, 2016 6.0001 LECTURE 6 53

By André Karwath aka Aka (Own work) [CC BY-SA 2.5 (http://creativecommons.org/licenses/by-sa/2.5)], via Wikimedia
Commons

TOWERS OF HANOI
 Having seen a set of examples of different sized stacks,
how would you write a program to print out the right
set of moves?

 Think recursively!
• Solve a smaller problem

• Solve a basic problem

• Solve a smaller problem

February 22, 2016 6.0001 LECTURE 6 54

February 22, 2016 6.0001 LECTURE 6 55

def printMove(fr, to):

print('move from ' + str(fr) + ' to ' + str(to))

def Towers(n, fr, to, spare):

if n == 1:

printMove(fr, to)

else:

Towers(n-1, fr, spare, to)

Towers(1, fr, to, spare)

Towers(n-1, spare, to, fr)

February 22, 2016 6.0001 LECTURE 6 56

RECURSION WITH MULTIPLE
BASE CASES
 Fibonacci numbers
• Leonardo of Pisa (aka Fibonacci) modeled the following

challenge
◦ Newborn pair of rabbits (one female, one male) are put in a pen

◦ Rabbits mate at age of one month

◦ Rabbits have a one month gestation period

◦ Assume rabbits never die, that female always produces one new
pair (one male, one female) every month from its second month
on.

◦ How many female rabbits are there at the end of one year?

February 22, 2016 6.0001 LECTURE 6 57

Demo courtesy of Prof. Denny Freeman and Adam Hartz

Demo courtesy of Prof. Denny Freeman and Adam Hartz

Demo courtesy of Prof. Denny Freeman and Adam Hartz

Demo courtesy of Prof. Denny Freeman and Adam Hartz

Demo courtesy of Prof. Denny Freeman and Adam Hartz

Demo courtesy of Prof. Denny Freeman and Adam Hartz

Demo courtesy of Prof. Denny Freeman and Adam Hartz

February 22, 2016 6.0001 LECTURE 6 65

Demo courtesy of Prof. Denny Freeman and Adam Hartz

Demo courtesy of Prof. Denny Freeman and Adam Hartz

FIBONACCI
After one month (call it 0) – 1 female

After second month – still 1 female (now
pregnant)

After third month – two females, one pregnant,
one not

In general, females(n) = females(n-1) +
females(n-2)
◦ Every female alive at month n-2 will produce one

female in month n;

◦ These can be added those alive in month n-1 to
get total alive in month n

Month Females

0 1

1 1

2 2

3 3

4 5

5 8

6 13

February 22, 2016 6.0001 LECTURE 6 68

FIBONACCI
 Base cases:
• Females(0) = 1

• Females(1) = 1

 Recursive case
• Females(n) = Females(n-1) + Females(n-2)

February 22, 2016 6.0001 LECTURE 6 69

February 22, 2016 6.0001 LECTURE 6 70

def fib(x):

"""assumes x an int >= 0

returns Fibonacci of x""”

if x == 0 or x == 1:

return 1

else:

return fib(x-1) + fib(x-2)

February 22, 2016 6.0001 LECTURE 6 71

RECURSION ON NON-
NUMERICS
 how to check if a string of characters is a palindrome, i.e.,
reads the same forwards and backwards
• “Able was I, ere I saw Elba” – attributed to Napoleon

• “Are we not drawn onward, we few, drawn onward to new era?” –
attributed to Anne Michaels

February 22, 2016 6.0001 LECTURE 6 72

By Beinecke Library (Flickr: [General Napolean
Bonaparte]) [CC BY-SA 2.0
(http://creativecommons.org/licenses/by-sa/2.0)],
via Wikimedia Commons

By Larth_Rasnal (Own work) [GFDL
(http://www.gnu.org/copyleft/fdl.html) or CC BY 3.0
(http://creativecommons.org/licenses/by/3.0)], via
Wikimedia Commons

SOLVING RECURSIVELY?
 First, convert the string to just characters, by stripping
out punctuation, and converting upper case to lower
case

 Then
• Base case: a string of length 0 or 1 is a palindrome

• Recursive case:
◦ If first character matches last character, then is a palindrome if

middle section is a palindrome

February 22, 2016 6.0001 LECTURE 6 73

EXAMPLE
‘Able was I, ere I saw Elba’  ‘ablewasiereisawleba’

isPalindrome(‘ablewasiereisawleba’)
is same as
• ‘a’ == ‘a’ and
isPalindrome(‘blewasiereisawleb’)

February 22, 2016 6.0001 LECTURE 6 74

February 22, 2016 6.0001 LECTURE 6 75

def isPalindrome(s):

def toChars(s):
s = s.lower()
ans = ''
for c in s:

if c in 'abcdefghijklmnopqrstuvwxyz':
ans = ans + c

return ans

def isPal(s):
if len(s) <= 1:

return True
else:

return s[0] == s[-1] and isPal(s[1:-1])

return isPal(toChars(s))

DIVIDE AND CONQUER
 an example of a “divide and conquer” algorithm

 solve a hard problem by breaking it into a set of sub-
problems such that:
• sub-problems are easier to solve than the original

• solutions of the sub-problems can be combined to solve
the original

February 22, 2016 6.0001 LECTURE 6 76

6.0001 LECTURE 6 77February 22, 2016

MODULES AND FILES
 have assumed that all our code is stored in one file

 cumbersome for large collections of code, or for code
that should be used by many different other pieces of
programming

 a module is a .py file containing a collection Python
definitions and statements

6.0001 LECTURE 6 78February 22, 2016

EXAMPLE MODULE
 the file circle.py contains

pi = 3.14159

def area(radius):

return pi*(radius**2)

def circumference(radius):

return 2*pi*radius



February 22, 2016 6.0001 LECTURE 6 79

EXAMPLE MODULE
 then we can import and use this module:

import circle

pi = 3

print(pi)

print(circle.pi)

print(circle.area(3))

print(circle.circumference(3))

 results in the following being printed:

3

3.14159

28.27431

18.849539999999998

February 22, 2016 6.0001 LECTURE 6 80

OTHER IMPORTING
 if we don’t want to refer to functions and variables by their
module, and the names don’t collide with other bindings,
then we can use:

from circle import *

print(pi)

print(area(3))

 this has the effect of creating bindings within the current
scope for all objects defined within circle

 statements within a module are executed only the first
time a module is imported

February 22, 2016 6.0001 LECTURE 6 81

FILES
 need a way to save our work for later use

 every operating system has its own way of handling
files; Python provides an operating-system
independent means to access files, using a file handle

nameHandle = open(‘kids’, ‘w’)

 creates a file named kids and returns file handle
which we can name and thus reference. The w
indicates that the file is to opened for writing into.

February 22, 2016 6.0001 LECTURE 6 82

FILES: example
nameHandle = open(‘kids’, ‘w’)

for i in range(2):

name = input(‘Enter name: ‘)

nameHandle.write(name + ‘\’)

nameHandle.close()

February 22, 2016 6.0001 LECTURE 6 83

FILES: example
nameHandle = open(‘kids’, ‘r’)

for line in nameHandle:

print(line)

nameHandle.close()

February 22, 2016 6.0001 LECTURE 6 84

