
TUPLES, LISTS,
MUTABILITY,
CLONING

6.00.1X LECTURE 1

TUPLES
 an ordered sequence of elements, can mix element types

 immutable, cannot change element values

 represented with parentheses

te = ()

t = (2,"one",3)

t[0] evaluates to 2

(2,"one",3) + (5,6) evaluates to (2,"one",3,5,6)

t[1:2] slice tuple, evaluates to ("one",)

t[1:3] slice tuple, evaluates to ("one",3)

t[1] = 4 gives error, can’t modify object

6.00.1X LECTURE 2

TUPLES
 conveniently used to swap variable values

x = y temp = x (x, y) = (y, x)

y = x x = y

y = temp

 used to return more than one value from a function

def quotient_and_remainder(x, y):

q = x//y

r = x%y

return (q, r)

(quot, rem) = quotient_and_remainder(4,5)

6.00.1X LECTURE 3

MANIPULATING TUPLES

 can iterate over tuples

def get_data(aTuple):

nums = ()

words = ()

for t in aTuple:

nums = nums + (t[0],)

if t[1] not in words:

words = words + (t[1],)

min_nums = min(nums)

max_nums = max(nums)

unique_words = len(words)

return (min_nums, max_nums, unique_words)

6.00.1X LECTURE 4

aTuple((),(),(),())

nums()

words()

6.00.1X LECTURE 5

LISTS
 ordered sequence of information, accessible by index

 a list is denoted by square brackets, []

 a list contains elements
• usually homogeneous (i.e., all integers)

• can contain mixed types (not common)

 list elements can be changed so a list is mutable

6.00.1X LECTURE 6

INDICES AND ORDERING
 an element of a list is at a position (aka index) in list, indices start at 0

a_list = []

b_list = [2, 'a', 4, True]

L = [2, 1, 3]

len(L) evaluates to 3

L[0] evaluates to 2

L[2]+1 evaluates to 4

L[3] gives an error

 index can be a variable or expression, must evaluate to an int

i = 2

L[i-1] evaluates to 1 since L[1] = 1 from above

index: 0 1 2

6.00.1X LECTURE 7

CHANGING ELEMENTS
 lists are mutable!

 assigning to an element at an index changes the value

L = [2, 1, 3]

L[1] = 5

 L is now [2, 5, 3], note this is the same object L

6.00.1X LECTURE 8

L

[2,1,3][2,5,3]

ITERATING OVER A LIST
 compute the sum of elements of a list

 common pattern

 notice
• list elements are indexed 0 to len(L)-1

• range(n) goes from 0 to n-1

6.00.1X LECTURE 9

total = 0

for i in range(len(L)):

total += L[i]

print(total)

total = 0

for i in L:

total += i

print(total)

6.00.1X LECTURE 10

OPERATIONS ON LISTS - ADD
 add elements to end of list with L.append(element)

 mutates the list!
L = [2,1,3]

L.append(5) L is now [2,1,3,5]

 what is the dot?
• lists are Python objects, everything in Python is an object

• objects have data

• objects have methods and functions

• access this information by object_name.do_something()

• will learn more about these later
6.00.1X LECTURE 11

OPERATIONS ON LISTS - ADD
 to combine lists together use concatenation, + operator

 mutate list with L.extend(some_list)

L1 = [2,1,3]

L2 = [4,5,6]

L3 = L1 + L2 L3 is [2,1,3,4,5,6]

L1.extend([0,6]) mutated L1 to [2,1,3,0,6]

6.00.1X LECTURE 12

OPERATIONS ON LISTS -
REMOVE
 delete element at a specific index with del(L[index])

 remove element at end of list with L.pop(), returns the
removed element

 remove a specific element with L.remove(element)
• looks for the element and removes it

• if element occurs multiple times, removes first occurrence

• if element not in list, gives an error

L = [2,1,3,6,3,7,0] # do below in order

L.remove(2) mutates L = [1,3,6,3,7,0]
L.remove(3) mutates L = [1,6,3,7,0]
del(L[1]) mutates L = [1,3,7,0]
L.pop() returns 0 and mutates L = [1,3,7]

6.00.1X LECTURE 13

CONVERT LISTS TO STRINGS
AND BACK
 convert string to list with list(s), returns a list with every
character from s an element in L

 can use s.split(), to split a string on a character parameter,
splits on spaces if called without a parameter

 use ''.join(L) to turn a list of characters into a string, can
give a character in quotes to add char between every element

6.00.1X LECTURE 14

s = "I <3 cs" s is a string
list(s) returns ['I',' ','<','3',' ','c','s']
s.split('<') returns ['I ', '3 cs']
L = ['a', 'b', 'c'] L is a list
''.join(L) returns "abc"
'_'.join(L) returns "a_b_c"

OTHER LIST OPERATIONS
 sort() and sorted()

 reverse()

 and many more!
https://docs.python.org/2/tutorial/datastructures.html

L=[9,6,0,3]

sorted(L) returns sorted list, does not mutate L

L.sort() mutates L=[0,3,6,9]

L.reverse() mutates L=[9,6,3,0]

6.00.1X LECTURE 15

https://docs.python.org/2/tutorial/datastructures.html

BRINGING TOGETHER LOOPS,
FUNCTIONS, range, and LISTS
 range is a special procedure
 returns something that behaves like a tuple!
 doesn’t generate the elements at once, rather it generates the first

element, and provides an iteration method by which subsequent
elements can be generated

range(5) equivalent to tuple[0,1,2,3,4]
range(2,6) equivalent to tuple[2,3,4,5]
range(5,2,-1) equivalent to tuple[5,4,3]

 when use range in a for loop, what the loop variable iterates over
behaves like a list!

for var in range(5):
<expressions>

behind the scenes, gets converted to something that will
behave like:

for var in (0,1,2,3,4):
<expressions>

6.00.1X LECTURE 16

6.00.1X LECTURE 17

MUTATION, ALIASING, CLONING

Python Tutor is your best friend to help sort this out!

http://www.pythontutor.com/

IMPORTANT
and

TRICKY!

6.00.1X LECTURE 18

http://www.pythontutor.com/

LISTS IN MEMORY
 lists are mutable

 behave differently than immutable types

 is an object in memory

 variable name points to object

 any variable pointing to that object is affected

 key phrase to keep in mind when working with lists is
side effects

6.00.1X LECTURE 19

AN ANALOGY
 attributes of a person

◦ singer, rich

 he is known by many names

 all nicknames point to the same person
• add new attribute to one nickname …

Justin Bieber: singer, rich

• … all his nicknames refer to old attributes AND all new ones

The Bieb is: singer, rich, troublemaker
JBeebs is: singer, rich, troublemaker
etc…

6.00.1X LECTURE 20

, troublemaker

Justin Drew Bieber
Justin Bieber
JB
Bieber
The Bieb
JBeebs

PRINT IS NOT ==
 if two lists print the same thing, does not mean they
are the same structure

 can test by mutating one, and checking

6.00.1X LECTURE 21

cool = [‘blue’, ‘green’, ‘grey’]

chill = [‘blue’, ‘green’, ‘grey’]

print(cool)

print(chill)

chill[2] = ‘blue’

print(chill)

print(cool)

ALIASES
 hot is an alias for warm – changing one changes the
other!

 append() has a side effect

6.00.1X LECTURE 22

a = 1

b = a

print(a)

print(b)

warm = [‘red’, ‘yellow’, ‘orange’]

hot = warm

hot.append(‘pink’)

print(hot)

print(warm)

CLONING A LIST
 create a new list and copy every element using
chill = cool[:]

6.00.1X LECTURE 23

cool = [‘blue’, ‘green’, ‘grey’]

chill = cool[:]

chill.append(‘black’)

print(chill)

print(cool)

SORTING LISTS
 calling sort() mutates the list, returns nothing

 calling sorted() does not mutate list, must assign
result to a variable

6.00.1X LECTURE 24

warm = [‘red’, ‘yellow’, ‘orange’]

sortedwarm = warm.sort()

print(warm)

print(sortedwarm)

cool = [‘grey’, ‘green’, ‘blue’]

sortedcool = sorted(cool)

print(cool)

print(sortedcool)

LISTS OF LISTS OF LISTS OF….
 can have nested lists

 side effects still possible after mutation

6.00.1X LECTURE 25

warm = [‘yellow’, ‘orange’]

hot = [‘red’]

brightcolors = [warm]

brightcolors.append(hot)

print(brightcolors)

hot.append(‘pink’)

print(hot)

print(brightcolors)

print(hot + warm)

print(hot)

MUTATION AND ITERATION
 avoid mutating a list as you are iterating over it
def remove_dups(L1, L2):

for e in L1:

if e in L2:

L1.remove(e)

L1 = [1, 2, 3, 4]

L2 = [1, 2, 5, 6]

remove_dups(L1, L2)

 L1 is [2,3,4] not [3,4] Why?
• Python uses an internal counter to keep track of index it is in the loop

• mutating changes the list length but Python doesn’t update the counter

• loop never sees element 2

6.00.1X LECTURE 26

def remove_dups_new(L1, L2):

L1_copy = L1[:]

for e in L1_copy:

if e in L2:

L1.remove(e)

