
TUPLES, LISTS,
MUTABILITY,
CLONING

6.00.1X LECTURE 1

TUPLES
 an ordered sequence of elements, can mix element types

 immutable, cannot change element values

 represented with parentheses

te = ()

t = (2,"one",3)

t[0]  evaluates to 2

(2,"one",3) + (5,6)  evaluates to (2,"one",3,5,6)

t[1:2]  slice tuple, evaluates to ("one",)

t[1:3]  slice tuple, evaluates to ("one",3)

t[1] = 4  gives error, can’t modify object

6.00.1X LECTURE 2

TUPLES
 conveniently used to swap variable values

x = y temp = x (x, y) = (y, x)

y = x x = y

y = temp

 used to return more than one value from a function

def quotient_and_remainder(x, y):

q = x//y

r = x%y

return (q, r)

(quot, rem) = quotient_and_remainder(4,5)

6.00.1X LECTURE 3

MANIPULATING TUPLES

 can iterate over tuples

def get_data(aTuple):

nums = ()

words = ()

for t in aTuple:

nums = nums + (t[0],)

if t[1] not in words:

words = words + (t[1],)

min_nums = min(nums)

max_nums = max(nums)

unique_words = len(words)

return (min_nums, max_nums, unique_words)

6.00.1X LECTURE 4

aTuple((),(),(),())

nums()

words()

6.00.1X LECTURE 5

LISTS
 ordered sequence of information, accessible by index

 a list is denoted by square brackets, []

 a list contains elements
• usually homogeneous (i.e., all integers)

• can contain mixed types (not common)

 list elements can be changed so a list is mutable

6.00.1X LECTURE 6

INDICES AND ORDERING
 an element of a list is at a position (aka index) in list, indices start at 0

a_list = []

b_list = [2, 'a', 4, True]

L = [2, 1, 3]

len(L)  evaluates to 3

L[0]  evaluates to 2

L[2]+1  evaluates to 4

L[3]  gives an error

 index can be a variable or expression, must evaluate to an int

i = 2

L[i-1]  evaluates to 1 since L[1] = 1 from above

index: 0 1 2

6.00.1X LECTURE 7

CHANGING ELEMENTS
 lists are mutable!

 assigning to an element at an index changes the value

L = [2, 1, 3]

L[1] = 5

 L is now [2, 5, 3], note this is the same object L

6.00.1X LECTURE 8

L

[2,1,3][2,5,3]

ITERATING OVER A LIST
 compute the sum of elements of a list

 common pattern

 notice
• list elements are indexed 0 to len(L)-1

• range(n) goes from 0 to n-1

6.00.1X LECTURE 9

total = 0

for i in range(len(L)):

total += L[i]

print(total)

total = 0

for i in L:

total += i

print(total)

6.00.1X LECTURE 10

OPERATIONS ON LISTS - ADD
 add elements to end of list with L.append(element)

 mutates the list!
L = [2,1,3]

L.append(5)  L is now [2,1,3,5]

 what is the dot?
• lists are Python objects, everything in Python is an object

• objects have data

• objects have methods and functions

• access this information by object_name.do_something()

• will learn more about these later
6.00.1X LECTURE 11

OPERATIONS ON LISTS - ADD
 to combine lists together use concatenation, + operator

 mutate list with L.extend(some_list)

L1 = [2,1,3]

L2 = [4,5,6]

L3 = L1 + L2  L3 is [2,1,3,4,5,6]

L1.extend([0,6])  mutated L1 to [2,1,3,0,6]

6.00.1X LECTURE 12

OPERATIONS ON LISTS -
REMOVE
 delete element at a specific index with del(L[index])

 remove element at end of list with L.pop(), returns the
removed element

 remove a specific element with L.remove(element)
• looks for the element and removes it

• if element occurs multiple times, removes first occurrence

• if element not in list, gives an error

L = [2,1,3,6,3,7,0] # do below in order

L.remove(2)  mutates L = [1,3,6,3,7,0]
L.remove(3)  mutates L = [1,6,3,7,0]
del(L[1])  mutates L = [1,3,7,0]
L.pop()  returns 0 and mutates L = [1,3,7]

6.00.1X LECTURE 13

CONVERT LISTS TO STRINGS
AND BACK
 convert string to list with list(s), returns a list with every
character from s an element in L

 can use s.split(), to split a string on a character parameter,
splits on spaces if called without a parameter

 use ''.join(L) to turn a list of characters into a string, can
give a character in quotes to add char between every element

6.00.1X LECTURE 14

s = "I <3 cs"  s is a string
list(s)  returns ['I',' ','<','3',' ','c','s']
s.split('<')  returns ['I ', '3 cs']
L = ['a', 'b', 'c']  L is a list
''.join(L)  returns "abc"
'_'.join(L)  returns "a_b_c"

OTHER LIST OPERATIONS
 sort() and sorted()

 reverse()

 and many more!
https://docs.python.org/2/tutorial/datastructures.html

L=[9,6,0,3]

sorted(L)  returns sorted list, does not mutate L

L.sort()  mutates L=[0,3,6,9]

L.reverse()  mutates L=[9,6,3,0]

6.00.1X LECTURE 15

https://docs.python.org/2/tutorial/datastructures.html

BRINGING TOGETHER LOOPS,
FUNCTIONS, range, and LISTS
 range is a special procedure
 returns something that behaves like a tuple!
 doesn’t generate the elements at once, rather it generates the first

element, and provides an iteration method by which subsequent
elements can be generated

range(5)  equivalent to tuple[0,1,2,3,4]
range(2,6)  equivalent to tuple[2,3,4,5]
range(5,2,-1)  equivalent to tuple[5,4,3]

 when use range in a for loop, what the loop variable iterates over
behaves like a list!

for var in range(5):
<expressions>

behind the scenes, gets converted to something that will
behave like:

for var in (0,1,2,3,4):
<expressions>

6.00.1X LECTURE 16

6.00.1X LECTURE 17

MUTATION, ALIASING, CLONING

Python Tutor is your best friend to help sort this out!

http://www.pythontutor.com/

IMPORTANT
and

TRICKY!

6.00.1X LECTURE 18

http://www.pythontutor.com/

LISTS IN MEMORY
 lists are mutable

 behave differently than immutable types

 is an object in memory

 variable name points to object

 any variable pointing to that object is affected

 key phrase to keep in mind when working with lists is
side effects

6.00.1X LECTURE 19

AN ANALOGY
 attributes of a person

◦ singer, rich

 he is known by many names

 all nicknames point to the same person
• add new attribute to one nickname …

Justin Bieber: singer, rich

• … all his nicknames refer to old attributes AND all new ones

The Bieb is: singer, rich, troublemaker
JBeebs is: singer, rich, troublemaker
etc…

6.00.1X LECTURE 20

, troublemaker

Justin Drew Bieber
Justin Bieber
JB
Bieber
The Bieb
JBeebs

PRINT IS NOT ==
 if two lists print the same thing, does not mean they
are the same structure

 can test by mutating one, and checking

6.00.1X LECTURE 21

cool = [‘blue’, ‘green’, ‘grey’]

chill = [‘blue’, ‘green’, ‘grey’]

print(cool)

print(chill)

chill[2] = ‘blue’

print(chill)

print(cool)

ALIASES
 hot is an alias for warm – changing one changes the
other!

 append() has a side effect

6.00.1X LECTURE 22

a = 1

b = a

print(a)

print(b)

warm = [‘red’, ‘yellow’, ‘orange’]

hot = warm

hot.append(‘pink’)

print(hot)

print(warm)

CLONING A LIST
 create a new list and copy every element using
chill = cool[:]

6.00.1X LECTURE 23

cool = [‘blue’, ‘green’, ‘grey’]

chill = cool[:]

chill.append(‘black’)

print(chill)

print(cool)

SORTING LISTS
 calling sort() mutates the list, returns nothing

 calling sorted() does not mutate list, must assign
result to a variable

6.00.1X LECTURE 24

warm = [‘red’, ‘yellow’, ‘orange’]

sortedwarm = warm.sort()

print(warm)

print(sortedwarm)

cool = [‘grey’, ‘green’, ‘blue’]

sortedcool = sorted(cool)

print(cool)

print(sortedcool)

LISTS OF LISTS OF LISTS OF….
 can have nested lists

 side effects still possible after mutation

6.00.1X LECTURE 25

warm = [‘yellow’, ‘orange’]

hot = [‘red’]

brightcolors = [warm]

brightcolors.append(hot)

print(brightcolors)

hot.append(‘pink’)

print(hot)

print(brightcolors)

print(hot + warm)

print(hot)

MUTATION AND ITERATION
 avoid mutating a list as you are iterating over it
def remove_dups(L1, L2):

for e in L1:

if e in L2:

L1.remove(e)

L1 = [1, 2, 3, 4]

L2 = [1, 2, 5, 6]

remove_dups(L1, L2)

 L1 is [2,3,4] not [3,4] Why?
• Python uses an internal counter to keep track of index it is in the loop

• mutating changes the list length but Python doesn’t update the counter

• loop never sees element 2

6.00.1X LECTURE 26

def remove_dups_new(L1, L2):

L1_copy = L1[:]

for e in L1_copy:

if e in L2:

L1.remove(e)

