TUPLES, LISTS,
MUTABILITY,
CLONING

TUPLES

= an ordered sequence of elements, can mix element types

= immutable,|cannot change element values
we' :
(e@e“\a = represented with parentheses

QO N
a te =0 | e
N\
t = (2,"one", 3)
t[0] — evaluates to 2
(2,"one",3) + (5,6) — evaluatesto (2, "one", 3,5, 6)
t[1:2] - slice tuple, evaluates to ("one") (acoco‘i;\e
X
t[1:3] —> slice tuple, evaluatesto ("one", 3) et(\eaﬁi\e
2 ©

t[1] = 4 - gives error, can’t modify object ﬁ“ge«\e“‘

6.00.1X LECTURE 2

TUPLES

= conveniently used to swap variable values

X =V temp = X (x, v) = (y, X)

X -

= used to return more than one value from a function

def quotilent and remailnder (x, y):
q = x//y
r = X%3Y
return (g, r)

(quot, rem) = quotient and remainder (4,5)

6.00.1X LECTURE 3

MANIPULATING TUPLES

. A0S
“&sgd@%

aTuple (@D, @D, @D, @D)

= can iterate over tuples \
def get data(aTuple): NnNums)
nums = |()
e words (")

W words = ()

N
o0 |
for t 1in aTuple:
nums = nums + | (t[07],)
\\< . .
o\ if t[1l] not in words:
\e©
g@% words = words + (t[l],)
min nums = min (nums)
max nums = max (nums)
unique words = len (words)

return (min nums, max nums, unique words)

6.00.1X LECTURE

6.00.1X LECTURE 5

LISTS

= ordered sequence of information, accessible by index

= a list is denoted by square brackets, []

= 3 list contains elements
* usually homogeneous (i.e., all integers)
* can contain mixed types (not common)

= [ist elements can be changed so a list is mutable

6.00.1X LECTURE 6

INDICES AND ORDERING

= an element of a list is at a position (aka index) in list, indices start at 0
®
a list|=|[] |e&V

a(\’a\o\e ; Ny
N RIS b list = [2, 'a', 4, True]
o\
L = [2, 1, 3]
N AN
index: 0 1 2
len (L) - evaluatesto 3
L[0] - evaluates to 2
L[2]+1 - evaluatesto 4
L[3] —> gives an error
= index can be a variable or expression, must evaluate to an int
1 =2
L[i-1] - evaluatestolsinceLL[1] = 1 from above

6.00.1X LECTURE 7

CHANGING ELEMENTS

= lists are mutable!

= 3assigning to an element at an index changes the value
\"
L = [2, 1, 3] e,\«e@“w%"
\e°
L [1] _ 5 ‘\(O 6\,\)9

"=Lisnow [2, 5, 3], notethisisthe same object L

[2,5,3]

6.00.1X LECTURE 8

ITERATING OVER A LIST

= compute the sum of elements of a list \-\\@"‘{\:i;
= common pattern c’fz):;\\é‘&s
e
total = 0 total = 0 %;@éﬂ
for 1 1n range(len (L)) : for 1 in|L:
total += L[1] total += 1
print (total) print (total)
= notice

 |ist elements areindexed 0 to len (L) -1

* range (n) goesfrom (0 ton-1

6.00.1X LECTURE 9

6.00.1X LECTURE

OPERATIONS ON LISTS - ADD

= add elements to end of list with L.. append (element)

= mutates the list!
L = 12,1,3]
L.append (5) =2 Lisnow [2,1,3,5]
T

= what is the dot?
* lists are Python objects, everything in Python is an object

* objects have data
* objects have methods and functions
* access this information by ocbject name.do something()

* will learn more about these later

6.00.1X LECTURE

OPERATIONS ON LISTS - ADD

" to combine lists together use concatenation, + operator

* mutate list with L. extend (some list)

L1 = [2,1,3]

L2 = [4,5,0]

L3 = L1 + L2 - 1L3is[2,1,3,4,5,06]
Ll.extend ([0, 6]) - mutatedL1to [2,1,3,0, 6]

OPERATIONS ON LISTS -
REMOVE

" delete element at a specific index with del (L[index])

" remove element at end of list with L.. pop (), returns the
removed element

" remove a specific element with .. remove (element)
* |ooks for the element and removes it

* if element occurs multiple times, removes first occurrence
 if element not in list, gives an error

\\"X\es'o“(D _ :

N & L = [2,1,3,6,3,7,0] # do below in order
@ (L. remove (2) > mutates L = [1,3,6,3,7,0]
e L.remove (3) > mutatesT = [1,6,3,7,0]

1del (L[1]) - mutatesL = [1,3,7,0]
L L.pop () - returns 0 and mutates . = [1, 3, 7]

6.00.1X LECTURE 13

CONVERT LISTS TO STRINGS
AND BACK

= convert string to list with 1ist (s), returns a list with every
character from s an elementin L

"canuse s.split (), tosplita string on a character parameter,
splits on spaces if called without a parameter

"use ''.join (L) toturn a list of characters into a string, can
give a character in quotes to add char between every element

s = "I <3 cs" - s isastring

list (s) 2 returns ['T'," ','<','3'"," ', 'c','s"']
s.split('<') —Dreturns ['I ', '3 cs']

L =1["a', 'b', 'c'] - Lisalist

"' .join (L) - returns "abc"

' '.join(L) —>returns"a b c"

6.00.1X LECTURE

OTHER LIST OPERATIONS

"= sort () and sorted ()

" reverse ()

= and many more!
https://docs.python.org/2/tutorial/datastructures.htmi

L.=[9,6,0,3]

sorted (L) - returns sorted list, does not mutate L
L.sort () -2 mutates IL=[0, 3, 6, 9]
L.reverse () -2 mutates IL=[9, 6, 3, 0]

6.00.1X LECTURE

https://docs.python.org/2/tutorial/datastructures.html

BRINGING TOGETHER LOOPS,
-UNCTIONS, range, and LISTS

" range is a special procedure
= returns something that behaves like a tuple!
= doesn’t generate the elements at once, rather it generates the first

element, and Brovides an iteration method by which subsequent
elements can be generated

range (5) - equivalentto tuple[0,1,2,3,4]
range (2, 6) - equivalentto tuple[2, 3,4, 5]
range (5,2, -1) - equivalent to tuple[5, 4, 3]

=" when use range in a for loop, what the loop variable iterates over
behaves like a list!

for var in range (95) :
<expressions>

behind the scenes, gets converted to something that will
behave like:

for var in (0,1,2,3,4):
<expressions>

6.00.1X LECTURE

6.00.1X LECTURE

MUTATION, ALIASING, CLONING

IMPORTANT

and
TRICKY!

Python Tutor is your best friend to help sort this out!

http://www.pythontutor.com/

http://www.pythontutor.com/

LISTS IN MEMORY

= lists are mutable

= behave differently than immutable types

" is an object in memory

= variable name points to object

= any variable pointing to that object is affected

= key phrase to keep in mind when working with lists is
side effects

6.00.1X LECTURE

Justin Drew Bieber
Justin Bieber

AN ANALOGY s
= attributes of a person \»\ JTQ:eii: ;
° singer, rich A\ s

= he is known by many names

= all nicknames point to the same person
* add new attribute to one nickname ...
Justin Bieber: singer, rich , troublemaker
e ... all his nicknames refer to old attributes AND all new ones

The Bieb is: singer, rich, troublemaker
JBeebs is: singer, rich, troublemaker
etc...

6.00.1X LECTURE

PRINT IS NOT ==

= if two lists print the same thing, does not mean they
are the same structure

= can test by mutating one, and checking

Frames Objects

cool = [‘'blue’, ‘green’, ‘grey’]

chill = [‘blue’, ‘green’, ‘grey’] Global frame list

print (cool) | D 1 2

print (chill) cool | "blue” | "green” | "grey”
chill |e—_

chill[2] = ‘blue’ S list

print (chill) A 0 1 2 ‘

"blue” "gresn" blue"

print (cool)

6.00.1X LECTURE

ALIASES

" hot is an alias for warm — changing one changes the
other!

" append () has a side effect

Frames Objects
a =1
b = a Global frame list
rint (a e 0 1 2

: 1 tzb; a |1 :,3 ‘ "red" ‘ "yellow" ‘ “orange” ‘
prin ol fiﬁ’

A

'

warm = [‘red’, ‘yellow’, ‘orange’] warm ';,
hot = warm hot | &

hot.append (‘pink’)
print (hot)
print (warm)

6.00.1X LECTURE

CLONING A LIST

= create a new list and copy every element using
chill = cool[:]

Frames Objects
cool = [‘'blue’, ‘green’, ‘grey’]
chill = cool[:] Global frame list
| 0 1 2
CDUI r " L1 1L m 1L l_1r
chill.append (‘black’) - blue™ | “green™ | “grey
. . .-
print (chill) < —~—
print (cool) ™, list
4|0 1 2
Ilblue'!r “gr‘Een" "gr‘E}-’"

6.00.1X LECTURE

SORTING LISTS

= calling sort () mutates the list, returns nothing

" calling sorted () does not mutate list, must assign
result to a variable

Frames Objects

Global frame list
warm = [‘red’, ‘yellow’, ‘orange’] — 1 5
sortedwarm = warm.sort () warm . "orange" | "red" | "yellow"
print (warm) sortedwarm |MNone
print (sortedwarm) el -— list
cool = [‘grey’, ‘green’, ‘blue’] sortedcool -HH"‘H.H b ‘grey” | "green” | "blue”
sortedcool = sorted(cool) ™~
print (cool) N\, st
print (sortedcool) N0 1 2

"blue" "greesn" "grey"

6.00.1X LECTURE

LISTS OF LISTS OF LISTS OF....

= cah have nested lists

= side effects still possible after mutation

warm = [‘yellow’, ‘orange’]
hot = [‘red’]
brightcolors = [warm]

brightcolors.append (hot)
print (brightcolors)

hot.append (‘pink’)
print (hot)
print (brightcolors)

print (hot + warm)
print (hot)

Frames Objects
Glokbal frame list
warm F__-_____ ____?' :I"ggell:-w“ 1“:‘-range“
hot |&——01WU8 ~ ,-"
brightcolors HHT{'M‘“& 'ft
|

6.00.1X LECTURE

MUTATION AND ITERATION

= avoid mutating a list as you are iterating over it

def remove dups(Ll, L2): def remove dups new(Ll, L2):
N L1 copy =|L1[:]
for e in L1 copy:

for e 1n L1l:

1f e in L2:

if e 1in L2:
x L1l.remove (e) L1.remove (e)

. :(_’('\
L1 = [1, 2, 3, 4] \O“e\\sth@\l _ 1l
C C
L2z = [1, 2, 5, 0] t‘(\a’tLééxc\oﬂe

remove dups (Ll, L2) does
= 1.1 is[2,3,4] not[3,4] Why?
* Python uses an internal counter to keep track of index it is in the loop

* mutating changes the list length but Python doesn’t update the counter
* |loop never sees element 2

6.00.1X LECTURE

