
FUNCTIONS AS
OBJECTS,
DICTIONARIES

6.00.1X LECTURE 1

FUNCTIONS AS OBJECTS
 functions are first class objects:

◦ have types

◦ can be elements of data structures like lists

◦ can appear in expressions
◦ as part of an assignment statement

◦ as an argument to a function!!

 particularly useful to use functions as arguments
when coupled with lists
◦ aka higher order programming

EXAMPLE
def applyToEach(L, f):

"""assumes L is a list, f a function

mutates L by replacing each element,

e, of L by f(e)"""

for i in range(len(L)):

L[i] = f(L[i])

EXAMPLE
def applyToEach(L, f):

for i in range(len(L)):

L[i] = f(L[i])

applyToEach(L, abs)

applyToEach(L, int)

applyToEach(L, fact)

applyToEach(L, fib)

L = [1, -2, 3.4]

def applyToEach(L, f):

for i in range(len(L)):

L[i] = f(L[i])

applyToEach(L, abs)

applyToEach(L, int)

applyToEach(L, fact)

applyToEach(L, fib)

EXAMPLE

L = [1, -2, 3.4]

[1, 2, 3.4]

def applyToEach(L, f):

for i in range(len(L)):

L[i] = f(L[i])

applyToEach(L, abs)

applyToEach(L, int)

applyToEach(L, fact)

applyToEach(L, fib)

EXAMPLE

L = [1, -2, 3.4]

[1, 2, 3.4]

[1, 2, 3]

def applyToEach(L, f):

for i in range(len(L)):

L[i] = f(L[i])

applyToEach(L, abs)

applyToEach(L, int)

applyToEach(L, fact)

applyToEach(L, fib)

EXAMPLE

L = [1, -2, 3.4]

[1, 2, 3.4]

[1, 2, 3]

[1, 2, 6]

def applyToEach(L, f):

for i in range(len(L)):

L[i] = f(L[i])

applyToEach(L, abs)

applyToEach(L, int)

applyToEach(L, fact)

applyToEach(L, fib)

EXAMPLE

L = [1, -2, 3.4]

[1, 2, 3.4]

[1, 2, 3]

[1, 2, 6]

[1, 2, 13]

LISTS OF FUNCTIONS
def applyFuns(L, x):

for f in L:

print(f(x))

applyFuns([abs, int, fact, fib], 4)

4

4

24

5

GENERALIZATION OF HOPS
 Python provides a general purpose HOP, map

 simple form – a unary function and a collection of suitable arguments
◦ map(abs, [1, -2, 3, -4])

 produces an ‘iterable’, so need to walk down it
for elt in map(abs, [1, -2, 3, -4]):

print(elt)

[1, 2, 3, 4]

 general form – an n-ary function and n collections of arguments
◦ L1 = [1, 28, 36]
◦ L2 = [2, 57, 9]
for elt in map(min, L1, L2):

print(elt)

[1, 28, 9]

6.00.1X LECTURE 11

STRINGS, TUPLES, RANGES,
LISTS
 Common operations

◦ seq[i] ith element of sequence
◦ len(seq) length of sequence

◦ seq1 + seq2 concatenation of sequences (not range)

◦ n*seq sequence that repeats seq n times (not range)

◦ seq[start:end] slice of sequence

◦ e in seq True if e contained in sequence

◦ e not in seq True if e contained in sequence

◦ for e in seq iterates over elements of sequence

6.00.1X LECTURE 12

PROPERTIES
Type Type of

elements
Examples of literals Mutable

str characters ‘ ‘, ‘a’,

‘abc’

No

tuple any type (), (3,),

(‘abc’, 4)

No

range integers range(10),

range(1,10,2)

No

list any type [], [3],

[‘abc’, 4]

Yes

6.00.1X LECTURE 13

6.00.1X LECTURE 14

DICTIONARIES

6.00.1X LECTURE 15

HOW TO STORE
STUDENT INFO
 so far, can store using separate lists for every info

names = ['Ana', 'John', 'Denise', 'Katy']

grade = ['B', 'A+', 'A', 'A']

course = [2.00, 6.0001, 20.002, 9.01]

 a separate list for each item

 each list must have the same length

 info stored across lists at same index, each index
refers to info for a different person

6.00.1X LECTURE 16

HOW TO UPDATE/RETRIEVE
STUDENT INFO
def get_grade(student, name_list, grade_list, course_list):

i = name_list.index(student)

grade = grade_list[i]

course = course_list[i]

return (course, grade)

 messy if have a lot of different info to keep track of

 must maintain many lists and pass them as arguments

 must always index using integers

 must remember to change multiple lists
6.00.1X LECTURE 17

A BETTER AND CLEANER WAY –
A DICTIONARY
 nice to index item of interest directly (not always int)

 nice to use one data structure, no separate lists

A list A dictionary
Elem 1

Elem 2

Elem 3

Elem 4

…

Key 1

Key 2

Key 3

Key 4

…

Val 1

Val 2

Val 3

Val 4

…

0

1

2

3

…

6.00.1X LECTURE 18

A PYTHON DICTIONARY
 store pairs of data
• key

• value

my_dict = {}

grades = {'Ana':'B', 'John':'A+', 'Denise':'A', 'Katy':'A'}

Key 1

Key 2

Key 3

…

Val 1

Val 2

Val 3

…

key1 val1

6.00.1X LECTURE 19

key2 val2 key3 val3 key4 val4

'Ana'

'Denise'

'John'

'Katy'

'B'

'A'

'A+'

'A'

'Ana'

'Denise'

'John'

'Katy'

'B'

'A'

'A+'

'A'

DICTIONARY LOOKUP
 similar to indexing into a list

 looks up the key

 returns the value associated
with the key

 if key isn’t found, get an error

6.00.1X LECTURE 20

grades = {'Ana':'B', 'John':'A+', 'Denise':'A', 'Katy':'A'}

grades['John'] evaluates to 'A+'

grades['Sylvan'] gives a KeyError

DICTIONARY
OPERATIONS

grades = {'Ana':'B', 'John':'A+', 'Denise':'A', 'Katy':'A'}

 add an entry

grades['Sylvan'] = 'A'

 test if key in dictionary

'John' in grades returns True
'Daniel' in grades returns False

 delete entry

del(grades['Ana'])

6.00.1X LECTURE 21

'Sylvan' 'A'

'Ana'

'Denise'

'John'

'Katy'

'B'

'A'

'A+'

'A'

DICTIONARY
OPERATIONS

grades = {'Ana':'B', 'John':'A+', 'Denise':'A', 'Katy':'A'}

 get an iterable that acts like a tuple of all keys

grades.keys() returns ['Denise','Katy','John','Ana']

get an iterable that acts like a tuple of all values
grades.values() returns ['A', 'A', 'A+', 'B']

6.00.1X LECTURE 22

'Ana'

'Denise'

'John'

'Katy'

'B'

'A'

'A+'

'A'

DICTIONARY KEYS and VALUES
 values
• any type (immutable and mutable)
• can be duplicates
• dictionary values can be lists, even other dictionaries!

 keys
• must be unique
• immutable type (int, float, string, tuple,bool)
• actually need an object that is hashable, but think of as immutable as all

immutable types are hashable

• careful with float type as a key

 no order to keys or values!

d = {4:{1:0}, (1,3):"twelve", 'const':[3.14,2.7,8.44]}

6.00.1X LECTURE 23

list vs dict

6.00.1X LECTURE 24

 ordered sequence of
elements

 look up elements by an
integer index

 indices have an order

 index is an integer

 matches “keys” to
“values”

 look up one item by
another item

 no order is guaranteed

 key can be any
immutable type

6.00.1X LECTURE 25

EXAMPLE: 3 FUNCTIONS TO
ANALYZE SONG LYRICS

1) create a frequency dictionary mapping str:int

2) find word that occurs the most and how many times
• use a list, in case there is more than one word

• return a tuple (list,int) for (words_list, highest_freq)

3) find the words that occur at least X times
• let user choose “at least X times”, so allow as parameterS

• return a list of tuples, each tuple is a (list, int)
containing the list of words ordered by their frequency

• IDEA: From song dictionary, find most frequent word. Delete
most common word. Repeat. It works because you are
mutating the song dictionary.

6.00.1X LECTURE 26

CREATING A DICTIONARY
def lyrics_to_frequencies(lyrics):

myDict = {}

for word in lyrics:

if word in myDict:

myDict[word] += 1

else:

myDict[word] = 1

return myDict

6.00.1X LECTURE 27

USING THE DICTIONARY
def most_common_words(freqs):

values = freqs.values()

best = max(values)

words = []

for k in freqs:

if freqs[k] == best:

words.append(k)

return (words, best)

6.00.1X LECTURE 28

LEVERAGING DICTIONARY
PROPERTIES
def words_often(freqs, minTimes):

result = []

done = False

while not done:

temp = most_common_words(freqs)

if temp[1] >= minTimes:

result.append(temp)

for w in temp[0]:

del(freqs[w])

else:

done = True

return result

print(words_often(beatles, 5))

6.00.1X LECTURE 29

6.00.1X LECTURE 30

FIBONACCI RECURSIVE CODE
def fib(n):

if n == 1:

return 1

elif n == 2:

return 2

else:

return fib(n-1) + fib(n-2)

 two base cases

 calls itself twice

 this code is inefficient

6.00.1X LECTURE 31

INEFFICIENT FIBONACCI
fib(n) = fib(n-1) + fib(n-2)

 recalculating the same values many times!

 could keep track of already calculated values

fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(1)

fib(2) fib(1)

6.00.1X LECTURE 32

fib(2)

FIBONACCI WITH A
DICTIONARY
def fib_efficient(n, d):

if n in d:

return d[n]

else:

ans = fib_efficient(n-1, d) + fib_efficient(n-2, d)

d[n] = ans

return ans

d = {1:1, 2:2}

print(fib_efficient(6, d))

 do a lookup first in case already calculated the value

 modify dictionary as progress through function calls

6.00.1X LECTURE 33

6.00.1X LECTURE 34

GLOBAL VARIABLES
 can be dangerous to use

◦ breaks the scoping of variables by function call

◦ allows for side effects of changing variable values in ways
that affect other computation

 but can be convenient when want to keep track of
information inside a function

 example – measuring how often fib and
fib_efficient are called

6.00.1X LECTURE 35

TRACKING EFFICIENCY
def fib(n):

global numFibCalls

numFibCalls += 1

if n == 1:

return 1

elif n == 2:

return 2

else:

return fib(n-1)+fib(n-2)

6.00.1X LECTURE 36

def fibef(n, d):

global numFibCalls

numFibCalls += 1

if n in d:

return d[n]

else:

ans = fibef(n-1,d)+fibef(n-2,d)

d[n] = ans

return ans

TRACKING EFFICIENCY
numFibCalls = 0

print(fib(12))

print('function calls', numFibCalls)

numFibCalls = 0

d = {1:1, 2:2}

print(fib_efficient(12, d))

print('function calls', numFibCalls)

6.00.1X LECTURE 37

