FUNCTIONS AS
OBJECTS,
DICTIONARIES

FUNCTIONS AS OBJECTS

= functions are first class objects:
° have types
o can be elements of data structures like lists

° can appear in expressions
o as part of an assignment statement
° as an argument to a function!!

= particularly useful to use functions as arguments
when coupled with lists

> aka higher order programming

EXAMPLE

def applyToEach (L, f):

"""3ssumes L 1s a list, f a function
mutates L by replacing each element,
e, of L by f(e)"""

for 1 1in range(len (L)) :

L{i] = £(L[1])

EXAMPLE

def applyToEach (L, f):

for 1 in range(len (L)) :
L{1] = £(L[1])

applyToEach (L, abs)
applyToEach (L, 1nt)
applyToEach (L, fact)

applyToEach (L, fib)

EXAMPLE

def applyToEach (L, f):

for 1 in range(len (L)) :
L{1] = £(L[1])

applyToEach (L, abs)
am 12 4
applyToEach (L, 1nt)

applyToEach (L, fact)

applyToEach (L, fib)

EXAMPLE

def applyToEach (L, f):

for 1 in range(len (L)) :
L{1] = £(L[1])

applyToEach (L, abs)
applyToEach (L, 1nt)
applyToEach (L, fact)

applyToEach (L, fib)

EXAMPLE

def applyToEach (L, f):

for 1 in range(len (L)) :

L{1] = £(L[1])
L =11, -2, 3.4]
applyToEach (L, abs)
(1, 2, 3.4]
applyToEach (L, 1int)
(1, 2, 3]

applyToEach (L, fact)

_ (1, 2, 6]

applyToEach (L, fib)

EXAMPLE

def applyToEach (L, f):

for 1 in range(len (L)) :

L[1] = £(L[1])

L = [1, -2, 3.4]
applyToEach (L, abs)

(1, 2, 3.4]
applyToEach (L, 1int)

(1, 2, 3]
applyToEach (L, fact)

(1, 2, 6]

applyToEach (L, fib)

LISTS OF FUNCTIONS

def applyFuns (L, Xx):

for £ 1in L:

print (f (x))

applyFuns ([abs, int, fact, fib], 4)
4
4
24
5

GENERALIZATION OF HOPS

= Python provides a general purpose HOP, map

= simple form — a unary function and a collection of suitable arguments
omap(absl [11 _21 3/ _4])

= produces an ‘iterable’, so need to walk down it

e
for elt in map(abs, [1, -2, 3, -4]): (ewe«f

print (elt) @
(1, 2, 3, 4]

= general form —an n-ary function and n collections of arguments
oLl = [1, 28, 36]
o L2 = [2, 57, 9]
for elt in map(min, L1, L2):
print (elt)
[1, 28, 9]

6.00.1X LECTURE

STRINGS, TUPLES, RANGES,
LISTS

= Common operations
> seql[i] =it element of sequence
- len (seqg) -2 length of sequence
°cseql + seqg?2 -2 concatenation of sequences (not range)
on*seq -2 sequence that repeats seg n times (not range)
o seqg[start:end] -2 slice of sequence

ce 1in seq -2 True if e contained in sequence
°e not 1n seqg -2 True if e contained in sequence
o for e in seqg -2 iterates over elements of sequence

6.00.1X LECTURE

PROPERTIES

Type |Type of Examples of literals
elements

characters
‘abc’
tuple any type (), (3,), No
(Yabc’, 4)
range integers range (10), No
range (1,10, 2)
list any type [1, [31, Yes

[Yabc’, 4]

6.00.1X LECTURE

6.00.1X LECTURE

DICTIONARIES

HOW TO STORE
STUDENT INFO

= so far, canstqre using separate lists for every info

names = '"John', 'Denise', 'Katy']
grade — v_|_v, 'A', 'A']
course 6.0001, 20.002, 9.01]

= 3 separate list for each item
= each list must have the same length

= info stored across lists at same index, each index
refers to info for a different person

6.00.1X LECTURE

HOW TO UPDATE/RETRIEVE
STUDENT INFO

def get grade(student, name list, grade list, course list):

1 = name list.index (student)
grade = grade list[1i]
course = course list[i]

return (course, grade)

= messy if have a lot of different info to keep track of
" must maintain many lists and pass them as arguments

= must always index using integers

= must remember to change multiple lists

6.00.1X LECTURE

A
A

BETTER AND CLEANER WAY —

DICTIONARY

" nice to index item of interest directly (not always int)

" nice to use one data structure, no separate lists

A list A dictionary

0 Elem 1 Key 1 Val 1

1 Elem 2 Key 2 Val 2

2 Elem 3 Key 3 Val 3

3 Elem 4 Key 4 Val 4
dek ((\eﬂ\‘ c“"‘ow‘o\\ o
\§ e\e _\(\de* e\e((\

a‘oe\

A PYTHON DICTIONARY

= store pairs of data 'Ana’
> key

'"Denise'"

* value

my dict =| {}

grades = {'Ana':'B', 'John':'A+', 'Denise':'A', 'Katy':'A'}

rr 1 1T 1t 1

keyl vall key2 val2 key3 val3 keyd val4

6.00.1X LECTURE

DICTIONARY LOOKUP

= similar to indexing into a list 'Ana’
" looks up the key 'Denise’
= returns the value associated 'John'
with the key 'Katy'

= if key isn’t found, get an error

grades = {'Ana':'B', 'John':'A+', 'Denise':'A', 'Katy':'A'}
grades|['John"'] - evaluatesto 'A+"

grades['Sylvan'] - givesaKeyError

6.00.1X LECTURE

DICTIONARY
OPERATIONS

grades = {'Ana':'B', 'John':'A+', 'Denise':'A', 'Katy':'A'}
= add an entry

grades['Sylvan'] = 'A'
= test if key in dictionary

"John' in grades - returns True
'Daniel' in grades - returns False

= delete entry

del (grades['Ana'])

6.00.1X LECTURE

DICTIONARY
OPERATIONS

grades = {'Ana':'B', 'John':'A+', 'Denise':'A', 'Katy':'A'}

%\)

" get an iterable that acts like a tuple of all keys «°

of
grades.keys () - returns ['Denise', 'Katy', '"John', "Ana']

mget an iterable that acts like a tuple of all values
grades.values () = returns ['A', 'A', 'A+', 'B'] (&gﬁ

6.00.1X LECTURE

DICTIONARY KEYS and VALUES

= values
* any type (immutable and mutable)

* can be duplicates
* dictionary values can be lists, even other dictionaries!

= keys
* must be unique

* immutable type (int, float, string, tuple, bool)

* actually need an object that is hashable, but think of as immutable as all
immutable types are hashable

 careful with f1loat type as a key

= no order to keys or values!
d = {4:{1:0}, (1,3):"twelve", 'const':[3.14,2.7,8.44])

6.00.1X LECTURE 23

1St VS dict

= ordered sequence of " matches “keys” to
elements “values”

" look up elements by an " [ook up one item by
integer index another item

" indices have an order " no order is guaranteed
" index is an integer = key can be any

immutable type

6.00.1X LECTURE

6.00.1X LECTURE

EXAMPLE: 3 FUNCTIONS TO
ANALYZE SONG LYRICS

1) create a frequency dictionary mapping str:int

2) find word that occurs the most and how many times
* use a list, in case there is more than one word

* returnatuple (1ist, int) for (words_list, highest freq)

3) find the words that occur at least X times
* let user choose “at least X times”, so allow as parameterS

* return a list of tuples, each tupleisa (1ist, int)
containing the list of words ordered by their frequency

* IDEA: From song dictionary, find most frequent word. Delete
most common word. Repeat. It works because you are
mutating the song dictionary.

6.00.1X LECTURE

CREATING A DICTIONARY

def lyrics to frequencies(lyrics):

Wt
' — e
myDict {} € o
«e \
: : o el
for word in lyrics: @ @@w
I\ 3(\\
if word in myDict: ?ﬁyﬁﬁ
\ e eN
: PANIN
myDict [word] = 1 g@“d@m
\)Qd 0(;\6"6
else: 2%

|
|_\

myDict [word]

return myDict

6.00.1X LECTURE

USING THE DICTIONARY

def most common words (fregs):

S c?
values = fregs.values () aﬂfﬁgéﬁ\
best = max(values) ﬁ@;wﬁ:

S
words = [] 6@&é@ﬂ
for k in fregs: c?:‘:;i\oO@N

1f fregsl[k] == best:
words.append (k)

return (words, best)

6.00.1X LECTURE

EVERAGING DICTIONARY
PROPERTIES

def words often(fregs, minTimes) :
result = []
done = False
while not done:

temp = most common words (fregs)

if temp[l] >= minTimes: &ﬁ@
result.append (temp) dﬁﬂ«\ﬁg &
for w in temp[0]: 6N§“@§$i;§e

del (fregs[w]) 6§99 oW
else: eﬁxg
done = True

return result

print (words often (beatles, 5))

6.00.1X LECTURE

6.00.1X LECTURE

FIBONACCI RECURSIVE CODE

def fib(n) :

1f n == 1:
return 1
elif n == 2:
return 2
else:

return fib(n-1) + fib(n-2)
= two base cases

= calls itself twice

= this code is inefficient

INEFFICIENT FIBONACCI

fib(n) = fib(n-1) + fib(n-2)

fib (5)

/
/\
/\

fib(fib (1)

eo
o ?°
b@

= recalculating the same values many times!

= could keep track of already calculated values

-IBONACCI WITH A
DICTIONARY

def fib efficient(n, d): éwﬁe
if n in d: QP
return d[n] e‘\(\odu i
else: A @ﬁwp
ans = fib efficient(n-1, d) + fi¥ efficient (n-2, d)
d[n] = ans

return ans

d= {1:1, 2:2}
print (fib efficient (6, d))

" do a lookup first in case already calculated the value

= modify dictionary as progress through function calls

6.00.1X LECTURE

6.00.1X LECTURE

GLOBAL VARIABLES

= can be dangerous to use
> breaks the scoping of variables by function call

o allows for side effects of changing variable values in ways
that affect other computation

= but can be convenient when want to keep track of
information inside a function

= example — measuring how often £ib and
fib efficient are called

6.00.1X LECTURE

TRACKING EFFICIENCY o

\!
s“ﬁﬁdéﬁﬁ
def fib(n): def fibef (n, d): _?,®§Qé664>
global numFibCalls grobal numFibCalls-—?<y§'6ﬂﬁ
numFibCalls 4= 1 numFibCalls += 1 N\
if n == 1f n in d:
return 1 return d[n]
elif n == else:
return 2 ans = fibef (n-1,d)+fibef (n-2,d)
d[n] = ans

else:
return fib (n-1)+fib(n-2)

return ans

6.00.1X LECTURE

TRACKING EFFICIENCY

numFibCalls = 0

print (f1b (12))
print ('function calls', numFibCalls)

numFibCalls = 0

d = {1:1, 2:2}
print (fi1b efficient (12, d))
print ('function calls', numFibCalls)

