TESTING, DEBUGGING




PROGRAMMING CHALLENGES
EXPECTATION REALITY

FUNNYCUTEGIFS
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WE AIM FOR HIGH QUALITY —
AN ANALOGY WITH SOUP

You are making soup but bugs keep falling in from the
ceiling. What do you do?

A
= check soup for bugs 6. Y %

* testing

= keep lid closed

* defensive
programming

= clean kitchen

* eliminate source
of bugs - debugging

Analogy thanks to Prof. Srini Devadas




4 DEFENSIVE PROGRAMMING A

* Write specifications for functions
 Modularize programs
* Check conditions on inputs/outputs (assertions)/

N
/ TESTING/VALIDATION \ / DEBUGGING \
 Compare input/output * Study events leading up
pairs to specification to an error

III

 “It’s not working * “Why is it not working?”
e “How can | break my e “How can | fix my

\ program?” /\ program?” /
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SET YOURSELF UP FOR EASY
TESTING AND DEBUGGING

= from the start, design code to ease this part

= break program into modules that can be tested and
debugged individually

= document constraints on modules
* what do you expect the input to be? the output to be?

= document assumptions behind code design

“Motherhood and apple pie” approach: P, \ N &
Something that cannot be questioned Y. via ~
because it appeals to universally-held,
wholesome values
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WHEN ARE YOU READY TO
TEST?

= ensure code runs
* remove syntax errors
* remove static semantic errors
* Python interpreter can usually find these for you

= have a set of expected results
* aninput set

* for each input, the expected output




CLASSES OF TESTS

= Unit testing
* validate each piece of program
( * testing each function separately

Regression testing

* add test for bugs as you find
them in a function

e catch reintroduced errors that
were previously fixed

Integration testing
* does overall program work?
* tend to rush to do this
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TESTING APPROACHES

" intuition about natural boundaries to the problem
def is bigger (x, y):

""" Assumes x and y are 1ints
Returns True 1f y is less than x, else False """

* canh you come up with some natural partitions?

" if no natural partitions, might do random testing
* probability that code is correct increases with more tests

* better options below

= black box testing
» explore paths through specification

= glass box testing
* explore paths through code
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BLACK BOX TESTING

def sgrt(x, eps):
"Un Assumes X, eps float5, X >= O, eps > 0

Returns res such that x-eps <= res*res <= xteps """

= designed without looking at the code

" can be done by someone other than the implementer to
avoid some implementer biases

" testing can be reused if implementation changes

" paths through specification
* build test cases in different natural space partitions

* also consider boundary conditions (empty lists, singleton
list, large numbers, small numbers)
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BLACK BOX TESTING

def sgrt(x, eps):

""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= xteps """

CASE x leps

boundary

Perfect square

Less than 1

Irrational square root
extremes

extremes

extremes

extremes

extremes

Ul
O
Ul

.0/2.0*%*64.0
.0**64.0
.0/2.0%*64.0
2.0**64.0

RN RPN O DN O
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GLASS BOX TESTING

= use code directly to guide design of test cases

= called path-complete if every potential path through
code is tested at least once

= what are some drawbacks of this type of testing?
* can go through loops arbitrarily many times

* missing paths ndition?
fac
. . arts ©
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M es
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GLASS BOX TESTING

def abs (x):
""w o Assumes x 1s an int
Returns x 1f x>=0 and —-x otherwilise """
1f x < -1:
return —x
else:
return Xx

= 3 path-complete test suite could miss a bug
= path-complete test suite: 2 and -2
= but abs(-1) incorrectly returns -1

= should still test boundary cases
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BUGS

= once you have discovered that your code does not run
properly, you want to:

o isolate the bug(s)
o eradicate the bug(s)
o retest until code runs correctly
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RUNTIME BUGS

= Overt vs. covert:

o QOvert has an obvious manifestation — code crashes or
runs forever

o Covert has no obvious manifestation — code returns a
value, which may be incorrect but hard to determine

= Persistent vs. intermittent:
o Persistent occurs every time code is run

o Intermittent only occurs some times, even if run on same
input




CATEGORIES OF BUGS

= Overt and persistent
> Obvious to detect

> Good programmers use defensive programming to try to
ensure that if error is made, bug will fall into this category

= Overt and intermittent

o More frustrating, can be harder to debug, but if
conditions that prompt bug can be reproduced, can be
handled

= Covert

o Highly dangerous, as users may not realize answers are
incorrect until code has been run for long period
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DEBUGGING

= steep learning curve

= goal is to have a bug-free program

= tools
* built in to IDLE and Anaconda

* Python Tutor
* print statement
* use your brain, be systematic in your hunt
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PRINT STATEMENTS

= good way to test hypothesis

= when to print
* enter function

* parameters
* function results

= use bisection method
* put print halfway in code
* decide where bug may be depending on values
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ERROR MESSAGES - EASY

= trying to access beyond the limits of a list
test = [1,2,3] then test[4] - IndexError

= trying to convert an inappropriate type
int (test) - TypeError

= referencing a non-existent variable
a - NameError

" mixing data types without appropriate coercion
'3'/4 - TypeError

= forgetting to close parenthesis, quotation, etc.
a = len([1,2,3]
print a = SyntaxError
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LOGIC ERRORS - HARD

= think before writing new code

= draw pictures, take a break

= explain the code to
e someone else

* arubber ducky
) T




DEBUGGING STEPS

= study program code
* ask how did | get the unexpected result
* don’t ask what is wrong
* is it part of a family?

= scientific method
* study available data

* form hypothesis
* repeatable experiments
* pick simplest input to test with
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Write entire program
Test entire program
Debug entire program

Change code

Remember where bug was

Test code

Forget where bug was or what change
you made

Panic

Write a function

Test the function, debug the function
Write a function

Test the function, debug the function
*** Do integration testing ***

Backup code

Change code

Write down potential bug in a
comment

Test code

Compare new version with old
version
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DEBUGGING SKILLS

= treat as a search problem: looking for explanation for
incorrect behavior

o study available data — both correct test cases and
incorrect ones

> form an hypothesis consistent with the data

o design and run a repeatable experiment with potential to
refute the hypothesis

o keep record of experiments performed: use narrow range
of hypotheses




DEBUGGING AS SEARCH

= want to narrow down space of possible sources of
error

= design experiments that expose intermediate stages
of computation (use print statements!), and use results
to further narrow search

= binary search can be a powerful tool for this




def isPal (x) :
assert type(x) == list
temp = X
temp.reverse
1f temp == x:
return True
else:
return False

def silly(n) :

for 1 in range (n) :
result = []
elem = 1nput('Enter element: ')
result.append (elem)

if isPal (result) :
print ('Yes')

else:
print ('No'")




STEPPING THROUGH THE
TESTS

= suppose we run this code:
o we try the input ‘abcba’, which succeeds

o we try the input ‘palinnilap’, which succeeds
o but we try the input ‘ab’, which also ‘succeeds’

= |et’s use binary search to isolate bug(s)

= pick a spot about halfway through code, and devise
experiment

o pick a spot where easy to examine intermediate values




def isPal (x) :
assert type(x) == 1list
temp = X
temp.reverse
if temp == x:
return True
else:
return False

def silly (n) :
for 1 in range(n) :
result = []
elem = input ('Enter element: ')
result.append (elem)
print (result) —
if isPal (result):
print ('Yes')
else:
print ('No')




STEPPING THROUGH THE
TESTS

= at this point in the code, we expect (for our test case
of ‘ab’), that result should be a list['a’, ‘b’]

= we run the code, and get [ b].

= because of binary search, we know that at least one
bug must be present earlier in the code

= so we add a second print, this time inside the loop




def isPal (x) :
assert type(x) == list
temp = X
temp.reverse
1f temp == x:
return True
else:
return False

def silly(n) :
for 1 1n range(n) :
result = []
elem = input ('Enter element: ')
result.append (elem)
print (result) {—
if isPal (result):
print ('Yes')
else:
print ('No')




STEPPING THROUGH

= when we run with our example, the print statement
returns

°[a]
> ['b7]

= this suggests that result is not keeping all elements

° 50 let’s move the initialization of result outside the loop
and retry




def isPal (x):
assert type(x) == 1list
temp = X
temp.reverse
1f temp == x:
return True
else:
return False

def silly(n):

result = [] —

for 1 1n range (n) :
elem = input ('Enter element: ')
result.append (elem)
print (result)

1f 1sPal (result) :
print ('Yes')

else:
print ("No'")




STEPPING THROUGH

= this now shows we are getting the data structure
result properly set up, but we still have a bug
somewhere

> a reminder that there may be more than one problem!

o this suggests second bug must lie below print statement;
let’s look at isPal

° pick a point in middle of code, and add print statement
again; remove the earlier print statement




def isPal (x) :
assert type(x) == list
temp = X
temp.reverse
print (temp, x) —
1f temp == x:
return True
else:
return False

def silly (n) :

result = []

for 1 in range(n) :
elem = input ('Enter element: ')
result.append (elem)

if isPal (result):
print ('Yes')

else:
print ('No')




STEPPING THROUGH

= at this point in the code, we expect (for our example
of ‘ab’) that X should be ['a’, ‘b’], but temp should be
['b’, ‘a@’], however they both have the value ['a’, ‘b’]

= so let’s add another print statement, earlier in the
code




def isPal (x) :
assert type(x) == list
temp = X
print (‘before reverse’, temp, x) —
temp.reverse
print (‘after reverser’, temp, X) —
1f temp == x:
return True
else:
return False

def silly(n):

result = []
for 1 in range (n) :
elem = input ('Enter element: ')

result.append (elem)
if isPal (result) :

print ('Yes')
else:

print ('No'")




STEPPING THROUGH

= we see that temp has the same value before and after
the call to reverse

= if we look at our code, we realize we have committed
a standard bug — we forgot to actually invoke the
reverse method

> need temp.reverse()

= 5o let’s make that change and try again




def isPal (x) :
assert type(x) == 1list
temp = X
print (‘before reverse’, temp, X) —
temp.reverse () —
print (‘after reverse’, temp, Xx) —
1f temp == x:
return True
else:
return False

def silly(n) :

result = []
for 1 in range (n):
elem = 1nput('Enter element: ')

result.append (elem)
if isPal (result) :

print ('Yes')
else:

print ('No'")




STEPPING THROUGH

= but now when we run on our simple example, both X
and temp have been reversed!!

= we have also narrowed down this bug to a single line.
The error must be in the reverse step

" in fact, we have an aliasing bug — reversing temp has
also caused X to be reversed

o because they are referring to the same object




def isPal (x):
assert type(x) == list
temp = x[:]
print (‘before reverse’, temp, Xx) —
temp.reverse () —
print (‘after reverse’, temp, Xx) —
1f temp == x:
return True
else:
return False

def silly(n):

result = []
for 1 in range (n) :
elem = input ('Enter element: ')

result.append (elem)
if isPal (result) :

print ('Yes')
else:

print ('No'")




STEPPING THROUGH

= now running this shows that before the reverse step,
the two variables have the same form, but afterwards
only temp is reversed.

= we cah now go back and check that our other tests
cases still work correctly




SOME PRAGMATIC HINTS

" ook for the usual suspects

= ask why the code is doing what it is, not why it is not
doing what you want

= the bug is probably not where you think it is —
eliminate locations

= explain the problem to someone else
= don’t believe the documentation

= take a break and come back to the bug later



