TESTING, DEBUGGING

PROGRAMMING CHALLENGES
EXPECTATION REALITY

FUNNYCUTEGIFS

6.00.1X LECTURE 2

WE AIM FOR HIGH QUALITY —
AN ANALOGY WITH SOUP

You are making soup but bugs keep falling in from the
ceiling. What do you do?

A
= check soup for bugs 6. Y %

* testing

= keep lid closed

* defensive
programming

= clean kitchen

* eliminate source
of bugs - debugging

Analogy thanks to Prof. Srini Devadas

4 DEFENSIVE PROGRAMMING A

* Write specifications for functions
 Modularize programs
* Check conditions on inputs/outputs (assertions)/

N
/ TESTING/VALIDATION \ / DEBUGGING \
 Compare input/output * Study events leading up
pairs to specification to an error

III

 “It’s not working * “Why is it not working?”
e “How can | break my e “How can | fix my

\ program?” /\ program?” /

6.00.1X LECTURE

6.00.1X LECTURE 5

SET YOURSELF UP FOR EASY
TESTING AND DEBUGGING

= from the start, design code to ease this part

= break program into modules that can be tested and
debugged individually

= document constraints on modules
* what do you expect the input to be? the output to be?

= document assumptions behind code design

“Motherhood and apple pie” approach: P, \ N &
Something that cannot be questioned Y. via ~
because it appeals to universally-held,
wholesome values

6.00.1X LECTURE 6

WHEN ARE YOU READY TO
TEST?

= ensure code runs
* remove syntax errors
* remove static semantic errors
* Python interpreter can usually find these for you

= have a set of expected results
* aninput set

* for each input, the expected output

CLASSES OF TESTS

= Unit testing
* validate each piece of program
(* testing each function separately

Regression testing

* add test for bugs as you find
them in a function

e catch reintroduced errors that
were previously fixed

Integration testing
* does overall program work?
* tend to rush to do this

6.00.1X LECTURE

(

TESTING APPROACHES

" intuition about natural boundaries to the problem
def is bigger (x, y):

""" Assumes x and y are 1ints
Returns True 1f y is less than x, else False """

* canh you come up with some natural partitions?

" if no natural partitions, might do random testing
* probability that code is correct increases with more tests

* better options below

= black box testing
» explore paths through specification

= glass box testing
* explore paths through code

6.00.1X LECTURE 9

BLACK BOX TESTING

def sgrt(x, eps):
"Un Assumes X, eps float5, X >= O, eps > 0

Returns res such that x-eps <= res*res <= xteps """

= designed without looking at the code

" can be done by someone other than the implementer to
avoid some implementer biases

" testing can be reused if implementation changes

" paths through specification
* build test cases in different natural space partitions

* also consider boundary conditions (empty lists, singleton
list, large numbers, small numbers)

6.00.1X LECTURE

BLACK BOX TESTING

def sgrt(x, eps):

""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= xteps """

CASE x leps

boundary

Perfect square

Less than 1

Irrational square root
extremes

extremes

extremes

extremes

extremes

Ul
O
Ul

.0/2.0*%*64.0
.0**64.0
.0/2.0%*64.0
2.0**64.0

RN RPN O DN O

6.00.1X LECTURE

D N R RPRE RO O O O

.0001

.0001

.0001

.0001
.0/2.0*%*64.0
.0/2.0**64.0
.0/2.0%*64.0
.0**64.0
.0**64.0

GLASS BOX TESTING

= use code directly to guide design of test cases

= called path-complete if every potential path through
code is tested at least once

= what are some drawbacks of this type of testing?
* can go through loops arbitrarily many times

* missing paths ndition?
fac
. . arts ©
= guidelines ocise P ed e O™ e
o~ eX ot ente cuie = gnal Y
* branches \0OP “O \00p &€ ore

M es
\ c,\)"—ed S chias
oy exe \00P% 7 it

» for loops % 4y of 100° s f0r = ays 0 ©

6.00.1X LECTURE

GLASS BOX TESTING

def abs (x):
""w o Assumes x 1s an int
Returns x 1f x>=0 and —-x otherwilise """
1f x < -1:
return —x
else:
return Xx

= 3 path-complete test suite could miss a bug
= path-complete test suite: 2 and -2
= but abs(-1) incorrectly returns -1

= should still test boundary cases

6.00.1X LECTURE

6.00.1X LECTURE

BUGS

= once you have discovered that your code does not run
properly, you want to:

o isolate the bug(s)
o eradicate the bug(s)
o retest until code runs correctly

6.00.1X LECTURE

September 9, 1947

=Mark Il Aiken Relay Computer

i

Wice
L A

f.‘r;»nxbﬁun%’
AN oaan rsay 4

4

L
o,
‘.

6.00.1X LECTURE

Jan Arkesteijn CC-BY 2.0

Admiral Grace Murray Hopper

6.00.1X LECTURE 17

LA =27

;SW a\\)tov\ bw , {L\.)ao 90;7 2 05
J /00 . """‘1‘5 ~ am,km ./ 9057 §YC 795 <
137, (033 MP -M8 m/rﬁ) Y/s5 71‘0‘7(Y

3y Pro 2. l30ya6yrs

: Caw A z.lsoenwwj , '
EJonS =2 m~ 033 M LruJ Jeob” |
{~\ \) TM M

CO.')!\‘\C M

Smg chec
,x‘Im(1

Q‘@\ *70 ?G\ ne ‘ r
\moﬁ\\ vn Celay -

1/ :).'J«rtr'f-.j
1S £ e teo l‘ -La? Y

\Say

zﬁjlm &F;\VJT Qd'na 'a..s o-f bucl Lu’n‘ {oumt-
P L/.A-J.

6.00.1X LECTURE

RUNTIME BUGS

= Overt vs. covert:

o QOvert has an obvious manifestation — code crashes or
runs forever

o Covert has no obvious manifestation — code returns a
value, which may be incorrect but hard to determine

= Persistent vs. intermittent:
o Persistent occurs every time code is run

o Intermittent only occurs some times, even if run on same
input

CATEGORIES OF BUGS

= Overt and persistent
> Obvious to detect

> Good programmers use defensive programming to try to
ensure that if error is made, bug will fall into this category

= Overt and intermittent

o More frustrating, can be harder to debug, but if
conditions that prompt bug can be reproduced, can be
handled

= Covert

o Highly dangerous, as users may not realize answers are
incorrect until code has been run for long period

6.00.1X LECTURE

DEBUGGING

= steep learning curve

= goal is to have a bug-free program

= tools
* built in to IDLE and Anaconda

* Python Tutor
* print statement
* use your brain, be systematic in your hunt

6.00.1X LECTURE

PRINT STATEMENTS

= good way to test hypothesis

= when to print
* enter function

* parameters
* function results

= use bisection method
* put print halfway in code
* decide where bug may be depending on values

6.00.1X LECTURE

ERROR MESSAGES - EASY

= trying to access beyond the limits of a list
test = [1,2,3] then test[4] - IndexError

= trying to convert an inappropriate type
int (test) - TypeError

= referencing a non-existent variable
a - NameError

" mixing data types without appropriate coercion
'3'/4 - TypeError

= forgetting to close parenthesis, quotation, etc.
a = len([1,2,3]
print a = SyntaxError

6.00.1X LECTURE

LOGIC ERRORS - HARD

= think before writing new code

= draw pictures, take a break

= explain the code to
e someone else

* arubber ducky
) T

DEBUGGING STEPS

= study program code
* ask how did | get the unexpected result
* don’t ask what is wrong
* is it part of a family?

= scientific method
* study available data

* form hypothesis
* repeatable experiments
* pick simplest input to test with

6.00.1X LECTURE

Write entire program
Test entire program
Debug entire program

Change code

Remember where bug was

Test code

Forget where bug was or what change
you made

Panic

Write a function

Test the function, debug the function
Write a function

Test the function, debug the function
*** Do integration testing ***

Backup code

Change code

Write down potential bug in a
comment

Test code

Compare new version with old
version

6.00.1X LECTURE

27

6.00.1X LECTURE

DEBUGGING SKILLS

= treat as a search problem: looking for explanation for
incorrect behavior

o study available data — both correct test cases and
incorrect ones

> form an hypothesis consistent with the data

o design and run a repeatable experiment with potential to
refute the hypothesis

o keep record of experiments performed: use narrow range
of hypotheses

DEBUGGING AS SEARCH

= want to narrow down space of possible sources of
error

= design experiments that expose intermediate stages
of computation (use print statements!), and use results
to further narrow search

= binary search can be a powerful tool for this

def isPal (x) :
assert type(x) == list
temp = X
temp.reverse
1f temp == x:
return True
else:
return False

def silly(n) :

for 1 in range (n) :
result = []
elem = 1nput('Enter element: ')
result.append (elem)

if isPal (result) :
print ('Yes')

else:
print ('No'")

STEPPING THROUGH THE
TESTS

= suppose we run this code:
o we try the input ‘abcba’, which succeeds

o we try the input ‘palinnilap’, which succeeds
o but we try the input ‘ab’, which also ‘succeeds’

= |et’s use binary search to isolate bug(s)

= pick a spot about halfway through code, and devise
experiment

o pick a spot where easy to examine intermediate values

def isPal (x) :
assert type(x) == 1list
temp = X
temp.reverse
if temp == x:
return True
else:
return False

def silly (n) :
for 1 in range(n) :
result = []
elem = input ('Enter element: ')
result.append (elem)
print (result) —
if isPal (result):
print ('Yes')
else:
print ('No')

STEPPING THROUGH THE
TESTS

= at this point in the code, we expect (for our test case
of ‘ab’), that result should be a list['a’, ‘b’]

= we run the code, and get [b].

= because of binary search, we know that at least one
bug must be present earlier in the code

= so we add a second print, this time inside the loop

def isPal (x) :
assert type(x) == list
temp = X
temp.reverse
1f temp == x:
return True
else:
return False

def silly(n) :
for 1 1n range(n) :
result = []
elem = input ('Enter element: ')
result.append (elem)
print (result) {—
if isPal (result):
print ('Yes')
else:
print ('No')

STEPPING THROUGH

= when we run with our example, the print statement
returns

°[a]
> ['b7]

= this suggests that result is not keeping all elements

° 50 let’s move the initialization of result outside the loop
and retry

def isPal (x):
assert type(x) == 1list
temp = X
temp.reverse
1f temp == x:
return True
else:
return False

def silly(n):

result = [] —

for 1 1n range (n) :
elem = input ('Enter element: ')
result.append (elem)
print (result)

1f 1sPal (result) :
print ('Yes')

else:
print ("No'")

STEPPING THROUGH

= this now shows we are getting the data structure
result properly set up, but we still have a bug
somewhere

> a reminder that there may be more than one problem!

o this suggests second bug must lie below print statement;
let’s look at isPal

° pick a point in middle of code, and add print statement
again; remove the earlier print statement

def isPal (x) :
assert type(x) == list
temp = X
temp.reverse
print (temp, x) —
1f temp == x:
return True
else:
return False

def silly (n) :

result = []

for 1 in range(n) :
elem = input ('Enter element: ')
result.append (elem)

if isPal (result):
print ('Yes')

else:
print ('No')

STEPPING THROUGH

= at this point in the code, we expect (for our example
of ‘ab’) that X should be ['a’, ‘b’], but temp should be
['b’, ‘a@’], however they both have the value ['a’, ‘b’]

= so let’s add another print statement, earlier in the
code

def isPal (x) :
assert type(x) == list
temp = X
print (‘before reverse’, temp, x) —
temp.reverse
print (‘after reverser’, temp, X) —
1f temp == x:
return True
else:
return False

def silly(n):

result = []
for 1 in range (n) :
elem = input ('Enter element: ')

result.append (elem)
if isPal (result) :

print ('Yes')
else:

print ('No'")

STEPPING THROUGH

= we see that temp has the same value before and after
the call to reverse

= if we look at our code, we realize we have committed
a standard bug — we forgot to actually invoke the
reverse method

> need temp.reverse()

= 5o let’s make that change and try again

def isPal (x) :
assert type(x) == 1list
temp = X
print (‘before reverse’, temp, X) —
temp.reverse () —
print (‘after reverse’, temp, Xx) —
1f temp == x:
return True
else:
return False

def silly(n) :

result = []
for 1 in range (n):
elem = 1nput('Enter element: ')

result.append (elem)
if isPal (result) :

print ('Yes')
else:

print ('No'")

STEPPING THROUGH

= but now when we run on our simple example, both X
and temp have been reversed!!

= we have also narrowed down this bug to a single line.
The error must be in the reverse step

" in fact, we have an aliasing bug — reversing temp has
also caused X to be reversed

o because they are referring to the same object

def isPal (x):
assert type(x) == list
temp = x[:]
print (‘before reverse’, temp, Xx) —
temp.reverse () —
print (‘after reverse’, temp, Xx) —
1f temp == x:
return True
else:
return False

def silly(n):

result = []
for 1 in range (n) :
elem = input ('Enter element: ')

result.append (elem)
if isPal (result) :

print ('Yes')
else:

print ('No'")

STEPPING THROUGH

= now running this shows that before the reverse step,
the two variables have the same form, but afterwards
only temp is reversed.

= we cah now go back and check that our other tests
cases still work correctly

SOME PRAGMATIC HINTS

" ook for the usual suspects

= ask why the code is doing what it is, not why it is not
doing what you want

= the bug is probably not where you think it is —
eliminate locations

= explain the problem to someone else
= don’t believe the documentation

= take a break and come back to the bug later

