
TESTING, DEBUGGING

6.00.1X LECTURE 1

PROGRAMMING CHALLENGES

What you want the program to do What the program actually does

EXPECTATION REALITY

6.00.1X LECTURE 2

WE AIM FOR HIGH QUALITY –
AN ANALOGY WITH SOUP

You are making soup but bugs keep falling in from the
ceiling. What do you do?

 check soup for bugs
• testing

 keep lid closed
• defensive

programming

 clean kitchen
• eliminate source

of bugs - debugging
Analogy thanks to Prof. Srini Devadas

6.00.1X LECTURE 3

DEFENSIVE PROGRAMMING
• Write specifications for functions
• Modularize programs
• Check conditions on inputs/outputs (assertions)

TESTING/VALIDATION
• Compare input/output

pairs to specification
• “It’s not working!”
• “How can I break my

program?”

DEBUGGING
• Study events leading up

to an error
• “Why is it not working?”
• “How can I fix my

program?”

6.00.1X LECTURE 4

6.00.1X LECTURE 5

SET YOURSELF UP FOR EASY
TESTING AND DEBUGGING
 from the start, design code to ease this part

 break program into modules that can be tested and
debugged individually

 document constraints on modules
• what do you expect the input to be? the output to be?

 document assumptions behind code design

6.00.1X LECTURE 6

“Motherhood and apple pie” approach:
Something that cannot be questioned
because it appeals to universally-held,
wholesome values

WHEN ARE YOU READY TO
TEST?
 ensure code runs

• remove syntax errors

• remove static semantic errors

• Python interpreter can usually find these for you

 have a set of expected results
• an input set

• for each input, the expected output

6.00.1X LECTURE 7

CLASSES OF TESTS
 Unit testing

• validate each piece of program
• testing each function separately

 Regression testing
• add test for bugs as you find

them in a function
• catch reintroduced errors that

were previously fixed

 Integration testing
• does overall program work?
• tend to rush to do this

6.00.1X LECTURE 8

TESTING APPROACHES
 intuition about natural boundaries to the problem
def is_bigger(x, y):

""" Assumes x and y are ints

Returns True if y is less than x, else False """

• can you come up with some natural partitions?

 if no natural partitions, might do random testing
• probability that code is correct increases with more tests
• better options below

 black box testing
• explore paths through specification

 glass box testing
• explore paths through code

6.00.1X LECTURE 9

def sqrt(x, eps):

""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= x+eps """

 designed without looking at the code

 can be done by someone other than the implementer to
avoid some implementer biases

 testing can be reused if implementation changes

 paths through specification
• build test cases in different natural space partitions

• also consider boundary conditions (empty lists, singleton
list, large numbers, small numbers)

BLACK BOX TESTING

6.00.1X LECTURE 10

def sqrt(x, eps):

""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= x+eps """

BLACK BOX TESTING

6.00.1X LECTURE 11

CASE x eps

boundary 0 0.0001

Perfect square 25 0.0001

Less than 1 0.05 0.0001

Irrational square root 2 0.0001

extremes 2 1.0/2.0**64.0

extremes 1.0/2.0**64.0 1.0/2.0**64.0

extremes 2.0**64.0 1.0/2.0**64.0

extremes 1.0/2.0**64.0 2.0**64.0

extremes 2.0**64.0 2.0**64.0

GLASS BOX TESTING
 use code directly to guide design of test cases

 called path-complete if every potential path through
code is tested at least once

 what are some drawbacks of this type of testing?
• can go through loops arbitrarily many times

• missing paths

 guidelines
• branches

• for loops

• while loops

6.00.1X LECTURE 12

GLASS BOX TESTING
def abs(x):

""" Assumes x is an int

Returns x if x>=0 and –x otherwise """

if x < -1:

return –x

else:

return x

 a path-complete test suite could miss a bug

 path-complete test suite: 2 and -2

 but abs(-1) incorrectly returns -1

 should still test boundary cases

6.00.1X LECTURE 13

6.00.1X LECTURE 14

BUGS
 once you have discovered that your code does not run
properly, you want to:
◦ isolate the bug(s)

◦ eradicate the bug(s)

◦ retest until code runs correctly

6.00.1X LECTURE 15

September 9, 1947
Mark II Aiken Relay Computer

6.00.1X LECTURE 16

6.00.1X LECTURE 17

Admiral Grace Murray Hopper

Jan Arkesteijn CC-BY 2.0

6.00.1X LECTURE 18

RUNTIME BUGS
 Overt vs. covert:

◦ Overt has an obvious manifestation – code crashes or
runs forever

◦ Covert has no obvious manifestation – code returns a
value, which may be incorrect but hard to determine

 Persistent vs. intermittent:
◦ Persistent occurs every time code is run

◦ Intermittent only occurs some times, even if run on same
input

CATEGORIES OF BUGS
 Overt and persistent

◦ Obvious to detect
◦ Good programmers use defensive programming to try to

ensure that if error is made, bug will fall into this category

 Overt and intermittent
◦ More frustrating, can be harder to debug, but if

conditions that prompt bug can be reproduced, can be
handled

 Covert
◦ Highly dangerous, as users may not realize answers are

incorrect until code has been run for long period

6.00.1X LECTURE 21

DEBUGGING
 steep learning curve

 goal is to have a bug-free program

 tools
• built in to IDLE and Anaconda

• Python Tutor

• print statement

• use your brain, be systematic in your hunt

6.00.1X LECTURE 22

PRINT STATEMENTS
 good way to test hypothesis

 when to print
• enter function

• parameters

• function results

 use bisection method
• put print halfway in code

• decide where bug may be depending on values

6.00.1X LECTURE 23

ERROR MESSAGES - EASY
 trying to access beyond the limits of a list
test = [1,2,3] then test[4]  IndexError

 trying to convert an inappropriate type
int(test)  TypeError

 referencing a non-existent variable
a  NameError

 mixing data types without appropriate coercion
'3'/4  TypeError

 forgetting to close parenthesis, quotation, etc.
a = len([1,2,3]

print a  SyntaxError

6.00.1X LECTURE 24

LOGIC ERRORS - HARD
 think before writing new code

 draw pictures, take a break

 explain the code to
• someone else

• a rubber ducky

6.00.1X LECTURE 25

DEBUGGING STEPS
 study program code

• ask how did I get the unexpected result
• don’t ask what is wrong
• is it part of a family?

 scientific method
• study available data
• form hypothesis
• repeatable experiments
• pick simplest input to test with

6.00.1X LECTURE 26

DON’T DO
• Write entire program
• Test entire program
• Debug entire program

• Write a function
• Test the function, debug the function
• Write a function
• Test the function, debug the function
• *** Do integration testing ***

• Change code
• Remember where bug was
• Test code
• Forget where bug was or what change

you made
• Panic

• Backup code
• Change code
• Write down potential bug in a

comment
• Test code
• Compare new version with old

version

6.00.1X LECTURE 27

6.00.1X LECTURE 28

DEBUGGING SKILLS
 treat as a search problem: looking for explanation for
incorrect behavior
◦ study available data – both correct test cases and

incorrect ones

◦ form an hypothesis consistent with the data

◦ design and run a repeatable experiment with potential to
refute the hypothesis

◦ keep record of experiments performed: use narrow range
of hypotheses

DEBUGGING AS SEARCH
 want to narrow down space of possible sources of
error

 design experiments that expose intermediate stages
of computation (use print statements!), and use results
to further narrow search

 binary search can be a powerful tool for this

def isPal(x):

assert type(x) == list

temp = x

temp.reverse

if temp == x:

return True

else:

return False

def silly(n):

for i in range(n):

result = []

elem = input('Enter element: ')

result.append(elem)

if isPal(result):

print('Yes')

else:

print('No')

STEPPING THROUGH THE
TESTS
 suppose we run this code:

◦ we try the input ‘abcba’, which succeeds

◦ we try the input ‘palinnilap’, which succeeds

◦ but we try the input ‘ab’, which also ‘succeeds’

 let’s use binary search to isolate bug(s)

 pick a spot about halfway through code, and devise
experiment
◦ pick a spot where easy to examine intermediate values

def isPal(x):

assert type(x) == list

temp = x

temp.reverse

if temp == x:

return True

else:

return False

def silly(n):

for i in range(n):

result = []

elem = input('Enter element: ')

result.append(elem)

print(result)

if isPal(result):

print('Yes')

else:

print('No')

STEPPING THROUGH THE
TESTS
 at this point in the code, we expect (for our test case
of ‘ab’), that result should be a list [‘a’, ‘b’]

 we run the code, and get [‘b’].

 because of binary search, we know that at least one
bug must be present earlier in the code

 so we add a second print, this time inside the loop

def isPal(x):

assert type(x) == list

temp = x

temp.reverse

if temp == x:

return True

else:

return False

def silly(n):

for i in range(n):

result = []

elem = input('Enter element: ')

result.append(elem)

print(result)

if isPal(result):

print('Yes')

else:

print('No')

STEPPING THROUGH
 when we run with our example, the print statement
returns
◦ [‘a’]

◦ [‘b’]

 this suggests that result is not keeping all elements
◦ so let’s move the initialization of result outside the loop

and retry

def isPal(x):

assert type(x) == list

temp = x

temp.reverse

if temp == x:

return True

else:

return False

def silly(n):

result = []

for i in range(n):

elem = input('Enter element: ')

result.append(elem)

print(result)

if isPal(result):

print('Yes')

else:

print('No')

STEPPING THROUGH
 this now shows we are getting the data structure
result properly set up, but we still have a bug
somewhere
◦ a reminder that there may be more than one problem!

◦ this suggests second bug must lie below print statement;
let’s look at isPal

◦ pick a point in middle of code, and add print statement
again; remove the earlier print statement

def isPal(x):

assert type(x) == list

temp = x

temp.reverse

print(temp, x)

if temp == x:

return True

else:

return False

def silly(n):

result = []

for i in range(n):

elem = input('Enter element: ')

result.append(elem)

if isPal(result):

print('Yes')

else:

print('No')

STEPPING THROUGH
 at this point in the code, we expect (for our example
of ‘ab’) that x should be [‘a’, ‘b’], but temp should be
[‘b’, ‘a’], however they both have the value [‘a’, ‘b’]

 so let’s add another print statement, earlier in the
code

def isPal(x):

assert type(x) == list

temp = x

print(‘before reverse’, temp, x)

temp.reverse

print(‘after reverser’, temp, x)

if temp == x:

return True

else:

return False

def silly(n):

result = []

for i in range(n):

elem = input('Enter element: ')

result.append(elem)

if isPal(result):

print('Yes')

else:

print('No')

STEPPING THROUGH
 we see that temp has the same value before and after
the call to reverse

 if we look at our code, we realize we have committed
a standard bug – we forgot to actually invoke the
reverse method
◦ need temp.reverse()

 so let’s make that change and try again

def isPal(x):

assert type(x) == list

temp = x

print(‘before reverse’, temp, x)

temp.reverse()

print(‘after reverse’, temp, x)

if temp == x:

return True

else:

return False

def silly(n):

result = []

for i in range(n):

elem = input('Enter element: ')

result.append(elem)

if isPal(result):

print('Yes')

else:

print('No')

STEPPING THROUGH
 but now when we run on our simple example, both x
and temp have been reversed!!

 we have also narrowed down this bug to a single line.
The error must be in the reverse step

 in fact, we have an aliasing bug – reversing temp has
also caused x to be reversed
◦ because they are referring to the same object

def isPal(x):

assert type(x) == list

temp = x[:]

print(‘before reverse’, temp, x)

temp.reverse()

print(‘after reverse’, temp, x)

if temp == x:

return True

else:

return False

def silly(n):

result = []

for i in range(n):

elem = input('Enter element: ')

result.append(elem)

if isPal(result):

print('Yes')

else:

print('No')

STEPPING THROUGH
 now running this shows that before the reverse step,
the two variables have the same form, but afterwards
only temp is reversed.

 we can now go back and check that our other tests
cases still work correctly

SOME PRAGMATIC HINTS
 look for the usual suspects

 ask why the code is doing what it is, not why it is not
doing what you want

 the bug is probably not where you think it is –
eliminate locations

 explain the problem to someone else

 don’t believe the documentation

 take a break and come back to the bug later

