
TESTING, DEBUGGING

6.00.1X LECTURE 1



PROGRAMMING CHALLENGES

What you want the program to do What the program actually does

EXPECTATION REALITY

6.00.1X LECTURE 2



WE AIM FOR HIGH QUALITY –
AN ANALOGY WITH SOUP

You are making soup but bugs keep falling in from the 
ceiling. What do you do?

 check soup for bugs
• testing

 keep lid closed
• defensive 

programming

 clean kitchen
• eliminate source 

of bugs - debugging
Analogy thanks to Prof. Srini Devadas

6.00.1X LECTURE 3



DEFENSIVE PROGRAMMING
• Write specifications for functions
• Modularize programs
• Check conditions on inputs/outputs (assertions)

TESTING/VALIDATION
• Compare input/output 

pairs to specification
• “It’s not working!”
• “How can I break my 

program?”

DEBUGGING
• Study events leading up 

to an error
• “Why is it not working?”
• “How can I fix my 

program?”

6.00.1X LECTURE 4



6.00.1X LECTURE 5



SET YOURSELF UP FOR EASY 
TESTING AND DEBUGGING
 from the start, design code to ease this part

 break program into modules that can be tested and 
debugged individually

 document constraints on modules
• what do you expect the input to be? the output to be?

 document assumptions behind code design

6.00.1X LECTURE 6

“Motherhood and apple pie” approach:
Something that cannot be questioned 
because it appeals to universally-held, 
wholesome values



WHEN ARE YOU READY TO 
TEST?
 ensure code runs

• remove syntax errors

• remove static semantic errors

• Python interpreter can usually find these for you

 have a set of expected results
• an input set

• for each input, the expected output

6.00.1X LECTURE 7



CLASSES OF TESTS
 Unit testing

• validate each piece of program
• testing each function separately

 Regression testing
• add test for bugs as you find 

them in a function
• catch reintroduced errors that 

were previously fixed

 Integration testing
• does overall program work?
• tend to rush to do this

6.00.1X LECTURE 8



TESTING APPROACHES
 intuition about natural boundaries to the problem
def is_bigger(x, y):

""" Assumes x and y are ints

Returns True if y is less than x, else False """

• can you come up with some natural partitions?

 if no natural partitions, might do random testing
• probability that code is correct increases with more tests
• better options below

 black box testing
• explore paths through specification

 glass box testing
• explore paths through code

6.00.1X LECTURE 9



def sqrt(x, eps):

""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= x+eps """

 designed without looking at the code

 can be done by someone other than the implementer to 
avoid some implementer biases

 testing can be reused if implementation changes

 paths through specification 
• build test cases in different natural space partitions

• also consider boundary conditions (empty lists, singleton 
list, large numbers, small numbers)

BLACK BOX TESTING

6.00.1X LECTURE 10



def sqrt(x, eps):

""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= x+eps """

BLACK BOX TESTING

6.00.1X LECTURE 11

CASE x eps

boundary 0 0.0001

Perfect square 25 0.0001

Less than 1 0.05 0.0001

Irrational square root 2 0.0001

extremes 2 1.0/2.0**64.0

extremes 1.0/2.0**64.0 1.0/2.0**64.0

extremes 2.0**64.0     1.0/2.0**64.0

extremes 1.0/2.0**64.0 2.0**64.0

extremes 2.0**64.0     2.0**64.0



GLASS BOX TESTING
 use code directly to guide design of test cases 

 called path-complete if every potential path through 
code is tested at least once

 what are some drawbacks of this type of testing?
• can go through loops arbitrarily many times

• missing paths

 guidelines 
• branches

• for loops

• while loops

6.00.1X LECTURE 12



GLASS BOX TESTING
def abs(x):

""" Assumes x is an int

Returns x if x>=0 and –x otherwise """

if x < -1:

return –x

else:

return x

 a path-complete test suite could miss a bug

 path-complete test suite: 2 and -2

 but abs(-1) incorrectly returns -1

 should still test boundary cases

6.00.1X LECTURE 13



6.00.1X LECTURE 14



BUGS
 once you have discovered that your code does not run 
properly, you want to:
◦ isolate the bug(s)

◦ eradicate the bug(s)

◦ retest until code runs correctly

6.00.1X LECTURE 15



September 9, 1947
Mark II Aiken Relay Computer

6.00.1X LECTURE 16



6.00.1X LECTURE 17

Admiral Grace Murray Hopper

Jan Arkesteijn CC-BY 2.0



6.00.1X LECTURE 18



RUNTIME BUGS
 Overt vs. covert:

◦ Overt has an obvious manifestation – code crashes or 
runs forever

◦ Covert has no obvious manifestation – code returns a 
value, which may be incorrect but hard to determine

 Persistent vs. intermittent:
◦ Persistent occurs every time code is run

◦ Intermittent only occurs some times, even if run on same 
input



CATEGORIES OF BUGS
 Overt and persistent

◦ Obvious to detect
◦ Good programmers use defensive programming to try to 

ensure that if error is made, bug will fall into this category

 Overt and intermittent
◦ More frustrating, can be harder to debug, but if 

conditions that prompt bug can be reproduced, can be 
handled

 Covert
◦ Highly dangerous, as users may not realize answers are 

incorrect until code has been run for long period



6.00.1X LECTURE 21



DEBUGGING
 steep learning curve

 goal is to have a bug-free program

 tools
• built in to IDLE and Anaconda

• Python Tutor

• print statement

• use your brain, be systematic in your hunt

6.00.1X LECTURE 22



PRINT STATEMENTS
 good way to test hypothesis

 when to print
• enter function

• parameters

• function results

 use bisection method
• put print halfway in code

• decide where bug may be depending on values

6.00.1X LECTURE 23



ERROR MESSAGES - EASY
 trying to access beyond the limits of a list
test = [1,2,3] then      test[4]  IndexError

 trying to convert an inappropriate type
int(test)  TypeError

 referencing a non-existent variable 
a  NameError

 mixing data types without appropriate coercion
'3'/4  TypeError

 forgetting to close parenthesis, quotation, etc. 
a = len([1,2,3]

print a  SyntaxError

6.00.1X LECTURE 24



LOGIC ERRORS - HARD
 think before writing new code

 draw pictures, take a break

 explain the code to 
• someone else

• a rubber ducky

6.00.1X LECTURE 25



DEBUGGING STEPS
 study program code

• ask how did I get the unexpected result 
• don’t ask what is wrong
• is it part of a family?

 scientific method
• study available data
• form hypothesis
• repeatable experiments
• pick simplest input to test with

6.00.1X LECTURE 26



DON’T DO
• Write entire program
• Test entire program
• Debug entire program

• Write a function
• Test the function, debug the function
• Write a function
• Test the function, debug the function
• *** Do integration testing ***

• Change code
• Remember where bug was
• Test code
• Forget where bug was or what change 

you made
• Panic

• Backup code
• Change code
• Write down potential bug in a 

comment
• Test code
• Compare new version with old 

version

6.00.1X LECTURE 27



6.00.1X LECTURE 28



DEBUGGING SKILLS
 treat as a search problem: looking for explanation for 
incorrect behavior
◦ study available data – both correct test cases and 

incorrect ones

◦ form an hypothesis consistent with the data

◦ design and run a repeatable experiment with potential to 
refute the hypothesis

◦ keep record of experiments performed: use narrow range 
of hypotheses



DEBUGGING AS SEARCH
 want to narrow down space of possible sources of 
error

 design experiments that expose intermediate stages 
of computation (use print statements!), and use results 
to further narrow search

 binary search can be a powerful tool for this



def isPal(x):

assert type(x) == list

temp = x

temp.reverse

if temp == x:

return True

else:

return False

def silly(n):

for i in range(n):

result = []

elem = input('Enter element: ')

result.append(elem)

if isPal(result):

print('Yes')

else:

print('No')



STEPPING THROUGH THE 
TESTS
 suppose we run this code:

◦ we try the input ‘abcba’, which succeeds

◦ we try the input ‘palinnilap’, which succeeds

◦ but we try the input ‘ab’, which also ‘succeeds’

 let’s use binary search to isolate bug(s)

 pick a spot about halfway through code, and devise 
experiment
◦ pick a spot where easy to examine intermediate values



def isPal(x):

assert type(x) == list

temp = x

temp.reverse

if temp == x:

return True

else:

return False

def silly(n):

for i in range(n):

result = []

elem = input('Enter element: ')

result.append(elem)

print(result)

if isPal(result):

print('Yes')

else:

print('No')



STEPPING THROUGH THE 
TESTS
 at this point in the code, we expect (for our test case 
of ‘ab’), that result should be a list [‘a’, ‘b’]

 we run the code, and get [‘b’].

 because of binary search, we know that at least one 
bug must be present earlier in the code

 so we add a second print, this time inside the loop



def isPal(x):

assert type(x) == list

temp = x

temp.reverse

if temp == x:

return True

else:

return False

def silly(n):

for i in range(n):

result = []

elem = input('Enter element: ')

result.append(elem)

print(result)

if isPal(result):

print('Yes')

else:

print('No')



STEPPING THROUGH
 when we run with our example, the print statement 
returns
◦ [‘a’]

◦ [‘b’]

 this suggests that result is not keeping all elements
◦ so let’s move the initialization of result outside the loop 

and retry



def isPal(x):

assert type(x) == list

temp = x

temp.reverse

if temp == x:

return True

else:

return False

def silly(n):

result = []

for i in range(n):

elem = input('Enter element: ')

result.append(elem)

print(result)

if isPal(result):

print('Yes')

else:

print('No')



STEPPING THROUGH
 this now shows we are getting the data structure 
result properly set up, but we still have a bug 
somewhere 
◦ a reminder that there may be more than one problem!

◦ this suggests second bug must lie below print statement; 
let’s look at isPal

◦ pick a point in middle of code, and add print statement 
again; remove the earlier print statement



def isPal(x):

assert type(x) == list

temp = x

temp.reverse

print(temp, x)

if temp == x:

return True

else:

return False

def silly(n):

result = []

for i in range(n):

elem = input('Enter element: ')

result.append(elem)

if isPal(result):

print('Yes')

else:

print('No')



STEPPING THROUGH
 at this point in the code, we expect (for our example 
of ‘ab’) that x should be [‘a’, ‘b’], but temp should be 
[‘b’, ‘a’], however they both have the value [‘a’, ‘b’]

 so let’s add another print statement, earlier in the 
code



def isPal(x):

assert type(x) == list

temp = x

print(‘before reverse’, temp, x)

temp.reverse

print(‘after reverser’, temp, x)

if temp == x:

return True

else:

return False

def silly(n):

result = []

for i in range(n):

elem = input('Enter element: ')

result.append(elem)

if isPal(result):

print('Yes')

else:

print('No')



STEPPING THROUGH
 we see that temp has the same value before and after 
the call to reverse

 if we look at our code, we realize we have committed 
a standard bug – we forgot to actually invoke the 
reverse method
◦ need temp.reverse()

 so let’s make that change and try again 



def isPal(x):

assert type(x) == list

temp = x

print(‘before reverse’, temp, x)

temp.reverse()

print(‘after reverse’, temp, x)

if temp == x:

return True

else:

return False

def silly(n):

result = []

for i in range(n):

elem = input('Enter element: ')

result.append(elem)

if isPal(result):

print('Yes')

else:

print('No')



STEPPING THROUGH
 but now when we run on our simple example, both x
and temp have been reversed!!

 we have also narrowed down this bug to a single line.  
The error must be in the reverse step

 in fact, we have an aliasing bug – reversing temp has 
also caused x to be reversed
◦ because they are referring to the same object



def isPal(x):

assert type(x) == list

temp = x[:]

print(‘before reverse’, temp, x)

temp.reverse()

print(‘after reverse’, temp, x)

if temp == x:

return True

else:

return False

def silly(n):

result = []

for i in range(n):

elem = input('Enter element: ')

result.append(elem)

if isPal(result):

print('Yes')

else:

print('No')



STEPPING THROUGH
 now running this shows that before the reverse step, 
the two variables have the same form, but afterwards 
only temp is reversed.

 we can now go back and check that our other tests 
cases still work correctly



SOME PRAGMATIC HINTS
 look for the usual suspects

 ask why the code is doing what it is, not why it is not 
doing what you want

 the bug is probably not where you think it is –
eliminate locations

 explain the problem to someone else

 don’t believe the documentation

 take a break and come back to the bug later


