EXCEPTIONS,
ASSERTIONS

EXCEPTIONS AND ASSERTIONS

= what happens when procedure execution hits an
unexpected condition?

= get an exception... to what was expected
* trying to access beyond list limits

test = [1,7,4]

test[4] - IndexError
* trying to convert an inappropriate type

int (test) - TypeError
* referencing a non-existing variable

a - NameError
* mixing data types without coercion

'a'/4 - TypeError

6.00.01X LECTURE 2

OTHER TYPES OF EXCEPTIONS

= already seen common error types:
e SyntaxError: Python can’t parse program

* NameError: local or global name not found
* AttributeError: attribute reference fails
* TypeError: operand doesn’t have correct type

* ValueError: operand type okay, but value is illegal

* TOError: |0 system reports malfunction (e.g. file not
found)

6.00.01X LECTURE 3

WHAT TO DO WITH
EXCEPTIONS?

= what to do when encounter an error?

= fail silently:
 substitute default values or just continue
* bad idea! user gets no warning

= return an “error” value
 what value to choose?

* complicates code having to check for a special value

= stop execution, signal error condition

* in Python: raise an exception
ralise Exception ("descriptive string")

6.00.01X LECTURE 4

DEALING WITH EXCEPTIONS

= Python code can provide handlers for exceptions

try:
a = 1nt(input ("Tell me one number:"))
b = int(input ("Tell me another number:"))
print (a/b)
print ("Okay™)
except:

print ("Bug 1n user input.')
print ("Outside")

= exceptions raised by any statement in body of try are
handled by the except statement and execution continues
after the body of the except statement

6.00.01X LECTURE 5

HANDLING SPECIFIC
- XCEPTIONS

" have separate except clauses to deal with a particular
type of exception

try:
a = int(input ("Tell me one number: "))
b = int(input ("Tell me another number: "))
print ("a/b =", a/b)
print ("atb = ", a+b) "
except|ValueError: \ngﬁﬁds
print ("Could not convert to a number.”) §:«@§;Q
except| ZeroDivisionError: \dﬁ@
print ("Can't divide by zero”)
except: <O 3\\(
print ("Something went very wrong.”) éﬁ;@

6.00.01X LECTURE 6

OTHER EXCEPTIONS

B c]lse:

* body of this is executed when execution of associated
try body completes with no exceptions

= finally:
* body of this is always executed after try, else and

except clauses, even if they raised another error or
executed a break, continue or return

 useful for clean-up code that should be run no matter
what else happened (e.g. close a file)

6.00.01X LECTURE 7

6.00.01X LECTURE 8

EXAMPLE EXCEPTION USAGE

e
while True: (éﬁﬁQ
<
try: @&&63 |
n = input ("Please enter an intec ﬁé 3 ge’
. (\\\\ 66 e‘f’a
n = 1nt(n) 0O o7 o
\OOT ot o (\(\‘ @
break K o QQ&\
except ValueError: of®

print (“Input not an integer; try again”)
print ("Correct input of an integer!”)

6.00.01X LECTURE 9

EXAMPLE: CONTROL INPUT

data = []
file name = input ("Provide a name of a file of data ")
try: O@@ﬁﬁ
fh = open(file name, 'r') 0&@0
except IOError: (GQO e
. . W e
print ('cannot open', file name) “@6
else:
for new in fh:
if new != '\n':
addIt = new[:-1].split (', ")
data.append (addIt) dﬁ@
finally: %ﬁg

fh.close () # close file even if fail @@NG

6.00.01X LECTURE

EXAMPLE: CONTROL INPUT

= appears to correct read in data, and convert to a list of
lists

" now suppose we want to restructure this into a list of
names and a list of grades for each entry in the overall
list

EXAMPLE: CONTROL INPUT

data = T[]
file name = input("Provide a name of a file of data ")
try:

fh = open(file name, 'r'")

except IOError:
print ('cannot open', file name)
else:
for new in fh:
if new != '"\n':
addIt = new[:-1].split (', ")
data.append (addIt)

finally:

fh.close () 2@“5‘

0% e

gradesData = [] O‘\(\ (\3((\
if data: 0366 “QO

for student in data: eNa e>

try: \x30 Eﬁcxo
x

gradesData.append([student[0:2], [student[2]]]) Qﬁ)
except IndexError:
gradesData.append([student[0:2], [1])

6.00.01X LECTURE

EXAMPLE: CONTROL INPUT

= works okay if have standard form, including case of no
grade

= but fails if names are not two parts long

EXAMPLE: CONTROL INPUT

data = []
file name = input("Provide a name of a file of data ")
try:

fh = open(file name, 'r'")

except IOError:
print ('cannot open', file name)
else:

for new in fh:

if new != '"\n':
addIt = new[:-1].split(',"') #remove trailing \n
data.append(addIt)
finally:
fh.close () # close file even 1if fail
. S
gradesData = [] %(’666‘ (\3((\
if data: &(63 ’Q%e
| . o \)\‘\
for student in data: ?ﬁﬁa <
try: 6\60 q\‘c‘)‘\o
name = student[0:-1] \e\’a(\ 3\\0
grades = int (student[-11]) \§§9N
gradesData.append([name, [grades]])

except ValueError:
gradesData.append([student[:], []])

6.00.01X LECTURE

6.00.01X LECTURE

-XCEPTIONS AS CONTROL
-LOW

= don’t return special values when an error occurred
and then check whether ‘error value’ was returned

" instead, raise an exception when unable to produce a
result consistent with function’s specification

ralse <exceptionName> (<arguments>)

ralse |ValueError|("something 1s wrong'")

e

ot 2%

W (& 6? e
eN ST 2
¥ @ ot o
O (\0%
\\O X
\c’é\\\\

6.00.01X LECTURE

- XAMPLE: RAISING AN
- XCEPTION

def get ratios(Ll, L2):

""" Assumes: L1 and L2 are lists of equal length of numbers
Returns: a list containing L1[i]/L2[i] """
ratios = []
for index 1in range (len(L1l)):
try:
ratios.append (Ll [index]/float (L2 [index]))

except ZeroDivisionError:

5\
QQNOEK% ratios.append(float ('NaN')) #NaN = Not a Number
e o
200 6((\\0\\ except:
AR
Q*ﬁ;eﬁo ralise ValueError('get ratios called with bad arg')
@

return ratios

6.00.01X LECTURE

EXAMPLE OF EXCEPTIONS

= assume we are given a class list for a subject: each
entry is a list of two parts

 a list of first and last name for a student
* a list of grades on assignments

test grades = [[['peter', 'parker'], [80.0, 70.0, 85.0]],
[['bruce', 'wayne'], [100.0, 80.0, 74.0]1]

= create a new class list, with name, grades, and an
average

[[['peter', 'parker'], [80.0, 70.0, 85.0], 78.33333],
[['bruce', 'wayne'], [100.0, 80.0, 74.0], 84.666667]]]

6.00.01X LECTURE

EXAMPLE

CODE [[['peter', 'parker'], [80.0, 70.0, 85.0]],
[['bruce', 'wayne'], [100.0, 80.0, 74.0]1]

def get stats(class list):
new stats = []
for elt in class list:
new stats.append([elt[0], elt[l], avg(elt[1l])])
return new stats

def avg(grades) :
return sum(grades) /len (grades)

6.00.01X LECTURE

ERROR [F NO GRADE FOR A
STUDENT

"= if one or more students don’t have any grades,
get an error

test grades = ['peter', 'parker'], [10.0, 5.0, 85.0]1,

[

['"bruce', 'wayne'], [10.0, 8.0, 74.0]17,
['captain', 'america'], [8.0,10.0,96.01],
['deadpool'], [11]]

" get ZeroDivisionError: float division by zero

because try to
return sum(grades) /len (grades)

6.00.01X LECTURE

OPTION 1: FLAG THE ERROR
BY PRINTING A MESSAGE

= decide to notify that something went wrong with a msg
def avg(grades):
try:
return sum(grades)/len (grades)
except ZeroDivisionError:
print ('no grades data’)

" running on some test data gives

no grades data

[[['peter', 'parker'], [10.0, 5.0, 85.0], 15.416666660660660660],
[['bruce', 'wayne'], [10.0, 8.0, 74.0], 13.833333333333334],

&0
[['captain', 'america']l, [8.0, 10.0, 96.0], 17.5], eaﬂg {GSN%
S 3(\
[['deadpool'], [], None]] \oe@\ie&\)(‘\

e

6.00.01X LECTURE

OPTION 2: CHANGE THE POLICY

= decide that a student with no grades gets a zero

def avg(grades):
try:
return sum(grades)/len (grades)
except ZeroDivisionError:
print ('no grades data’)
return 0.0

" running on some test data gives

o
et
w&«@

o

no grades data

['peter', 'parker'], [10.0, 5.0, 85.0], 15.4166606606606606606],

'captain', 'america'], [8.0, 10.0, 96.01, 17.5], (ep&

[1
[['bruce', 'wayne'], [10.0, 8.0, 74.0], 13.833333333333334], Q
[1
[1

'deadpool'], []1,]10.0]] >
oo

6.00.01X LECTURE

6.00.01X LECTURE

ASSERTIONS

= want to be sure that assumptions on state of
computation are as expected

= use an assert statement to raise an
AssertionError exception if assumptions not met

= an example of good defensive programming

6.00.01X LECTURE

EXAMPLE

def avg(grades) :

assert not len(grades) == 0, 'no grades data'
return sum(grades) /len (grades) Qewﬁﬂ&
: \
A0 o el
¢ éy§'0§ﬁ°
\((\sse({\o(\
)

" raises an AssertionError if itis given an empty list for
grades

= otherwise runs ok

6.00.01X LECTURE

ASSERTIONS AS DEFENSIVE
PROGRAMMING

= assertions don’t allow a programmer to control
response to unexpected conditions

= ensure that execution halts whenever an expected
condition is not met

= typically used to check inputs to functions procedures,
but can be used anywhere

= can be used to check outputs of a function to avoid
propagating bad values

= can make it easier to locate a source of a bug

6.00.01X LECTURE

WHERE TO USE ASSERTIONS?

= goal is to spot bugs as soon as introduced and make
clear where they happened

" yse as a supplement to testing
" raise exceptions if users supplies bad data input

" use assertions to
* check types of arguments or values

* check that invariants on data structures are met
* check constraints on return values

 check for violations of constraints on procedure (e.g. no
duplicates in a list)

6.00.01X LECTURE

